The study of nonequilibrium phenomena in correlated lattice systems has developed into one of the most active and exciting branches of condensed matter physics. This research field provides rich new insights that could not be obtained from the study of equilibrium situations, and the theoretical understanding of the physics often requires the development of new concepts and methods. On the experimental side, ultrafast pump-probe spectroscopies enable studies of excitation and relaxation phenomena in correlated electron systems, while ultracold atoms in optical lattices provide a new way to control and measure the time evolution of interacting lattice systems with a vastly different characteristic time scale compared to electron systems. A theoretical description of these phenomena is challenging because, first, the quantum-mechanical time evolution of many-body systems out of equilibrium must be computed and second, strong-correlation effects which can be of a nonperturbative nature must be addressed. This review discusses the nonequilibrium extension of the dynamical mean field theory (DMFT), which treats quantum fluctuations in the time domain and works directly in the thermodynamic limit. The method reduces the complexity of the calculation via a mapping to a selfconsistent impurity problem, which becomes exact in infinite dimensions. Particular emphasis is placed on a detailed derivation of the formalism, and on a discussion of numerical techniques, which enable solutions of the effective nonequilibrium DMFT impurity problem. Insights gained into the properties of the infinite-dimensional Hubbard model under strong nonequilibrium conditions are summarized. These examples illustrate the current ability of the theoretical framework to reproduce and understand fundamental nonequilibrium phenomena, such as the dielectric breakdown of Mott insulators, photodoping, and collapse-and-revival oscillations in quenched systems. Furthermore, remarkable novel phenomena have been predicted by the nonequilibrium DMFT simulations of correlated lattice systems, including dynamical phase transitions and field-induced repulsion-to-attraction conversions.
We use nonequilibrium dynamical mean-field theory to study the time evolution of the fermionic Hubbard model after an interaction quench. Both in the weak-coupling and in the strong-coupling regime the system is trapped in quasistationary states on intermediate time scales. These two regimes are separated by a sharp crossover at U(c)dyn=0.8 in units of the bandwidth, where fast thermalization occurs. Our results indicate a dynamical phase transition which should be observable in experiments on trapped fermionic atoms.
A quantum many-body system which is prepared in the ground state of an integrable Hamiltonian does not directly thermalize after a sudden small parameter quench away from integrability. Rather, it will be trapped in a prethermalized state and can thermalize only at a later stage. We discuss several examples for which this prethermalized state shares some properties with the nonthermal steady state that emerges in the corresponding integrable system. These examples support the notion that nonthermal steady states in integrable systems may be viewed as prethermalized states that never decay further. Furthermore we show that prethermalization plateaus are under certain conditions correctly predicted by generalized Gibbs ensembles, which are the appropriate extension of standard statistical mechanics in the presence of many constants of motion. This establishes that the relaxation behaviors of integrable and nearly integrable systems are continuously connected and described by the same statistical theory.
The strongest interaction between microscopic spins in magnetic materials is the exchange interaction Jex. Therefore, ultrafast control of Jex holds the promise to control spins on ultimately fast timescales. We demonstrate that time-periodic modulation of the electronic structure by electric fields can be used to reversibly control Jex on ultrafast timescales in extended antiferromagnetic Mott insulators. In the regime of weak driving strength, we find that Jex can be enhanced and reduced for frequencies below and above the Mott gap, respectively. Moreover, for strong driving strength, even the sign of Jex can be reversed and we show that this causes time reversal of the associated quantum spin dynamics. These results suggest wide applications, not only to control magnetism in condensed matter systems, for example, via the excitation of spin resonances, but also to assess fundamental questions concerning the reversibility of the quantum many-body dynamics in cold atom systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.