In the range between 0 °C and 961 °C, the International Temperature Scale of 1990 (ITS-90) depends to a great extent on the freezing points of the pure metals gallium, indium, tin, zinc, aluminium and silver. An up-to-date realization of these fixed points is based on cells containing metals of ultra-high purity (6N or better) and should include a correction for the influence of relevant impurities. Still, chemical analyses of the fixed-point material can show large amounts of oxygen, which had to be neglected so far, because of the lack of detailed knowledge about it, presuming it could be removed from the cell by applying a vacuum (less than 1 Pa) for a few hours.In this paper we discuss an equilibrium of several forms of oxygen in a fixed-point cell, gaseous in the cell's atmosphere, dissolved in the fixed-point metal and as oxide in a separate (solid) phase. We will conclude that in many fixed points most of the oxygen is not dissolved in the metal, but bound in oxides of the fixed-point metal as well as oxides of some impurities. To demonstrate the impact that the precipitation of impurity oxides has on thermometry, two indium fixed-point cells were doped with magnesium and chromium, which leave the fixed-point temperature unchanged. Further evidence is drawn from earlier work. All these results support the presumed existence of (at least one) persistent separate oxide phase in the fixed points of indium, tin, zinc and aluminium, which renders them eutectic or peritectic points and is a more likely reason why the oxygen content of a cell does not influence the fixed-point temperature.To complement these studies, thermodynamic calculations show how to treat the equilibrium in the cell quantitatively. Using available chemical data, a list is provided that indicates for each fixed-point metal (including the other metal fixed points of the ITS-90: mercury, gold, copper) the impurities that probably build oxides. Due to the agreement of the calculated values with the presented experimental results, we suggest excluding those impurities from the correction of a fixed-point temperature (e.g. the SIE method), unless there is strong evidence of their dissolution.
The temperature and flatness (shape) of a fixed-point plateau depend on both the amount and nature of specific impurities and on thermal effects that are influenced by the fixed-point cell design and furnace properties. A better understanding and experimental proof of the influence of specific impurities on fixed-point realizations require the separation of impurity influences from thermal effects. In this paper the influence of heat exchange between the thermometer and furnace is quantified via a method based on changing the furnace temperature during the fixed-point measurement. It will be shown that the corresponding correction of this thermal effect has a dominant influence on the plateau shape compared to the influence of impurities. This leads to an explanation for why the maximum of an induced freeze is the most reproducible temperature. A secondary outcome is an explanation of why natural freezes have less flat plateaux compared to induced freezes, resulting in fixed-point temperatures that are too low. Furthermore, the suggested procedure is the basis of the direct and quantitative comparison of fixed-point cells and the detection of weak points within a specific design. It allows optimization of fixed-point cells and furnaces, and helps to deepen the common understanding of the phase transition in fixed-point cells.
Following the start of exploration of the problem of the effect of neon isotopes on the triple-point temperature in 2005, further progress was achieved in 2006-2008, and published in 2008. This paper summarizes the advances to date in our understanding as obtained from further work done in 2008-2009 on five basic aspects of the problem: new isotopic assays; new thermal measurements on neon of "natural" composition; the feasibility of obtaining a value of the slope dT tp /dx( 22 Ne) with an accuracy sufficient for the purpose; the possible occurrence of isotopic fractionation during the process of sealing the samples in the cells; and new thermal measurements
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.