KeY is a tool that provides facilities for formal specification and verification of programs within a commercial platform for UML based software development. Using the KeY tool, formal methods and object-oriented development techniques are applied in an integrated manner. Formal specification is performed using the Object Constraint Language (OCL), which is part of the UML standard. KeY provides support for the authoring and formal analysis of OCL constraints. The target language of KeY based development is Java Card DL, a proper subset of Java for smart card applications and embedded systems. KeY uses a dynamic logic for Java Card DL to express proof obligations, and provides a state-of-the-art theorem prover for interactive and automated verification. Apart from its integration into UML based software development, a characteristic feature of KeY is that formal specification and verification can be introduced incrementally.
Despite the dramatic growth of data accumulated by enterprises, obtaining value out of it is extremely challenging. In particular, the data access bottleneck prevents domain experts from getting the right piece of data within a constrained time frame. The Optique Platform unlocks the access to Big Data by providing end users support for directly formulating their information needs through an intuitive visual query interface. The submitted query is then transformed into highly optimized queries over the data sources, which may include streaming data, and exploiting massive parallelism in the backend whenever possible. The Optique Platform thus responds to one major challenge posed by Big Data in data-intensive industrial settings.
Data access in an enterprise setting is a determining factor for value creation processes, such as sense making, decision making, and intelligence analysis. Particularly, in an enterprise setting, intuitive data access tools that directly engage domain experts with data could substantially increase competitiveness and profitability. In this respect, the use of ontologies as a natural communication medium between end users and computers has emerged as a prominent approach. To this end, this article introduces a novel ontology-based visual query system, named OptiqueVQS, for end users. OptiqueVQS is built on a powerful and scalable data access platform and has a user-centric design supported by a widget-based flexible and extensible architecture allowing multiple coordinated representation and interaction paradigms to be employed. The results of a usability experiment performed with non-expert users suggest that OptiqueVQS provides a decent level of expressivity and high usability, and hence is quite promising.Keywords Visual query formulation · visual query systems · ontology-based data access · data retrieval 1 Introduction
An important application of semantic technologies in industry has been the formalisation of information models using OWL 2 ontologies and the use of RDF for storing and exchanging application data. Moreover, legacy data can be virtualised as RDF using ontologies following the ontology-based data access (OBDA) approach. In all these applications, it is important to provide domain experts with query formulation tools for expressing their information needs in terms of queries over ontologies. In this work, we present such a tool, OptiqueVQS, which is designed based on our experience with OBDA applications in Statoil and Siemens and on best HCI practices for interdisciplinary engineering environments. OptiqueVQS implements a number of unique techniques distinguishing it from analogous query formulation systems. In particular, it exploits ontology projection techniques to enable graph-based navigation over an ontology during query construction. Secondly, while OptiqueVQS is primarily ontology driven, it exploits sampled data to enhance selection of data values for some data attributes. Finally, OptiqueVQS is built on well-grounded requirements, design rationale, and quality attributes. We evaluated OptiqueVQS with both domain experts and casual users and qualitatively compared our system against prominent visual systems for ontology-driven query formulation and exploration of semantic data. OptiqueVQS is available online and can be downloaded together with an example OBDA scenario.
Value creation in an organisation is a timesensitive and data-intensive process, yet it is often delayed and bounded by the reliance on IT experts extracting data for domain experts. Hence, there is a need for providing people who are not professional developers with the flexibility to pose relatively complex and ad hoc queries in an easy and intuitive way. In this respect, visual methods for query formulation undertake the challenge of making querying independent of users' technical skills and the knowledge of the underlying textual query language and the structure of data. An ontology is more promising than the logical schema of the underlying data for guiding users in formulating queries, since it provides a richer vocabulary closer to the users' understanding. However, on the one hand, today the most of world's enterprise data reside in relational databases rather than triple stores, and on the other, visual query formulation has become more compelling due to ever-increasing data size and complexity-known as Big Data. This article presents and argues for ontology-based visual query formulation for end users; discusses its feasibility in terms This research is funded by the Seventh Framework Program (FP7) of the European Commission under Grant Agreement 318338, "Optique".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.