Collisions of low energy electrons with molecules are important for understanding many aspects of the environment and technologies. Understanding the processes that occur in these types of collisions can give insights into plasma etching processes, edge effects in fusion plasmas, radiation damage to biological tissues and more. A radical update of the previous expert system for computing observables relevant to these processes, Quantemol-N, is presented. The new Quantemol Electron Collision (QEC) expert system simplifyies the user experience, improving reliability and implements new features. The QEC graphical user interface (GUI) interfaces the Molpro quantum chemistry package for molecular target setups, and the sophisticated UKRmol+ codes to generate accurate and reliable cross-sections. These include elastic cross-sections, super elastic cross-sections between excited states, electron impact dissociation, scattering reaction rates, dissociative electron attachment, differential cross-sections, momentum transfer cross-sections, ionization cross sections, and high energy electron scattering cross-sections. With this new interface we will be implementing dissociative recombination estimations, vibrational excitations for neutrals and ions, and effective core potentials in the near future.
The Quantemol database (QDB) provides cross sections and rates of processes important for plasma models; heavy particle collisions (chemical reactions) and electron collision processes are considered. The current version of QDB has data on 28\,917 processes between 2\,485 distinct species plus data for surface processes. These data are available via a web interface or can be delivered directly to plasma models using an application program interface (API); data are available in formats suitable for direct input into a variety of popular plasma modelling codes including HPEM, COMSOL, ChemKIN, CFD-ACE+, and VisGlow. QDB provides ready assembled plasma chemistries plus the ability to build bespoke chemistries. The database also provides a Boltzmann solver for electron dynamics and a zero-dimensional model. These developments, use cases involving O$_2$, Ar/NF$_3$, Ar/NF$_3$/O$_2$, and He/H$_2$O/O$_2$ chemistries, and plans for the future are presented.
Articles you may be interested inIn situ nanomechanical testing in focused ion beam and scanning electron microscopes Rev. Sci. Instrum. 82, 063901 (2011); 10.1063/1.3595423Fabrication of complex three-dimensional nanostructures using focused ion beam and nanomanipulation
A fast algorithm is developed for ranking the species in a chemistry set according to their importance to the modeled densities of user-specified species of interest. The species ranking can be constructed for any set of user-specified plasma conditions, but here we focus predominantly on low-temperature plasmas, with gas temperatures between 300 and 1500 K covering the typical range of ICP and CCP plasma sources. This ranking scheme can be used to acquire insight into complex chemistry sets for modeling plasma phenomena or for a species-oriented reduction of the given chemistry set. The species-ranking method presented is based on a graph-theoretical representation of the detailed chemistry set and establishing indirect asymmetric coupling coefficients between pairs of species by the means of widely used graph search algorithms. Several alternative species-ranking schemes are proposed, all building on the theory behind different flavors of the directed relation graph method. The best-performing ranking method is identified statistically, by performing and evaluating a species-oriented iterative skeletal reduction on six, previously available, test chemistry sets (including O2–He and N2–H2) with varying plasma conditions. The species-ranking method presented leads to reductions of between 10 and 75% in the number of species compared to the original detailed chemistry set, depending on the specific test chemistry set and plasma conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.