Nanoparticles are essential building blocks for nanotechnology. In this paper we demonstrate a novel method to create nanoplatelets by thin film cracking. The thickness of the resulting platelets is determined by the film thickness, and their aspect ratio is controlled by the total strain and the elastic mismatch between substrate and thin film. Platelets can be created from any brittle film independently of microstructure and materials class. The feasibility of this method is substantiated by a statistical analysis of the fracture process.
We present an evaluation of the silicon solar cell as well as the photovoltaic (PV) module size and its effect on thermomechanical stress. The evaluation is based on finite-element method (FEM) simulations. Within these simulations, we perform parameter variations of the number of solar cells within a PV module from 60-140 cells, of the cell size from 156.0-161.75 mm, and the cell format from full cells down to quarter cells. The FEM simulations cover the lamination process, mechanical load, and thermal cycling for glass-foil as well as glass-glass modules. The presented results reveal correlations between the solar cell and module size with the stress in the solar cells. We also find that the interaction of the laminate with the module frame plays a significant role in thermal cycling. Of the varitations under investigation, the increase in cell size has the largest effect on the stress. However, at a mechanical load of 2400 Pa, glass-foil modules with less than 96 solar cells have a negligible failure probability. The advantage of placing the solar cells in the neutral axis of the laminate is proven by the negligible tensile stress values for all variations of the glass-glass modules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.