Here, we report a method for time-resolved, longitudinal extraction and quantitative measurement of intracellular proteins and mRNA from a variety of cell types. Cytosolic contents were repeatedly sampled from the same cell or population of cells for more than 5 d through a cell-culture substrate, incorporating hollow 150-nmdiameter nanostraws (NS) within a defined sampling region. Once extracted, the cellular contents were analyzed with conventional methods, including fluorescence, enzymatic assays (ELISA), and quantitative real-time PCR. This process was nondestructive with >95% cell viability after sampling, enabling long-term analysis. It is important to note that the measured quantities from the cell extract were found to constitute a statistically significant representation of the actual contents within the cells. Of 48 mRNA sequences analyzed from a population of cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs), 41 were accurately quantified. The NS platform samples from a select subpopulation of cells within a larger culture, allowing native cell-to-cell contact and communication even during vigorous activity such as cardiomyocyte beating. This platform was applied both to cell lines and to primary cells, including CHO cells, hiPSC-CMs, and human astrocytes derived in 3D cortical spheroids. By tracking the same cell or group of cells over time, this method offers an avenue to understand dynamic cell behavior, including processes such as induced pluripotency and differentiation.sampling | nanotechnology | molecular biology | cellular biology
We determine the detailed differences in geometry and band structure between wurtzite (Wz) and zinc blende (Zb) InAs nanowire (NW) surfaces using scanning tunneling microscopy/spectroscopy and photoemission electron microscopy. By establishing unreconstructed and defect-free surface facets for both Wz and Zb, we can reliably measure differences between valence and conduction band edges, the local vacuum levels, and geometric relaxations to the few-millielectronvolt and few-picometer levels, respectively. Surface and bulk density functional theory calculations agree well with the experimental findings and are used to interpret the results, allowing us to obtain information on both surface and bulk electronic structure. We can thus exclude several previously proposed explanations for the observed differences in conductivity of Wz-Zb NW devices. Instead, fundamental structural differences at the atomic scale and nanoscale that we observed between NW surface facets can explain the device behavior.
Using scanning tunneling microscopy and spectroscopy we study the atomic scale geometry and electronic structure of GaAs nanowires exhibiting controlled axial stacking of wurtzite (Wz) and zinc blende (Zb) crystal segments. We find that the nonpolar low-index surfaces {110}, {101[overline]0}, and {112[overline]0} are unreconstructed, unpinned, and without states in the band gap region. Direct comparison between Wz and Zb GaAs reveal a type-II band alignment and a Wz GaAs band gap of 1.52 eV.
Thin high-κ oxide films on InAs, formed by atomic layer deposition, are the key to achieve high-speed metal-oxide-semiconductor devices. We have studied the native oxide and the interface between InAs and 2 nm thick Al2O3 or HfO2 layers using synchrotron x-ray photoemission spectroscopy. Both films lead to a strong oxide reduction, obtaining less than 10% of the native As-oxides and between 10% and 50% of the native In-oxides, depending on the deposition temperature. The ratio of native In- to As-oxides is determined to be 2:1. The exact composition and the influence of different oxidation states and suboxides is discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.