Integrative taxonomy provides a major approximation to species delimitation based on integration of different perspectives (e.g. morphology, biochemistry and DNA sequences). The aim of this study was to assess the relationships and boundaries among Eastern Pacific Aplysina species using morphological, biochemical and molecular data. For this, a collection of sponges of the genus Aplysina from the Mexican Pacific was studied on the basis of their morphological, chemical (chitin composition), and molecular markers (mitochondrial COI and nuclear ribosomal rDNA: ITS1-5.8-ITS2). Three morphological species were identified, two of which are new to science. A. clathrata sp. nov. is a yellow to yellow-reddish or -brownish sponge, characterized by external clathrate-like morphology; A. revillagigedi sp. nov. is a lemon yellow to green, cushion-shaped sometimes lobate sponge, characterized by conspicuous oscules, which are slightly elevated and usually linearly distributed on rims; and A. gerardogreeni a known species distributed along the Mexican Pacific coast. Chitin was identified as the main structural component within skeletons of the three species using FTIR, confirming that it is shared among Verongida sponges. Morphological differences were confirmed by DNA sequences from nuclear ITS1-5.8-ITS2. Mitochondrial COI sequences showed extremely low but diagnostic variability for Aplysina revillagigedi sp. nov., thus our results corroborate that COI has limited power for DNA-barcoding of sponges and should be complemented with other markers (e.g. rDNA). Phylogenetic analyses of Aplysina sequences from the Eastern Pacific and Caribbean, resolved two allopatric and reciprocally monophyletic groups for each region. Eastern Pacific species were grouped in general accordance with the taxonomic hypothesis based on morphological characters. An identification key of Eastern Pacific Aplysina species is presented. Our results constitute one of the first approximations to integrative taxonomy, phylogeny and evolutionary biogeography of Eastern Pacific marine sponges; an approach that will significantly contribute to our better understanding of their diversity and evolutionary history.
Chitin occurs in a variety of invertebrates, especially in arthropod cuticles, but is rarely reported in the fossil record. Although it has been detected in fossils as old as Middle Cambrian and Silurian, the majority of records come from much younger, Cenozoic deposits. In this paper, we report the preservation of chitin in Early Jurassic neritimorph gastropod egg capsules deposited in bivalve shells from prodelta-deltafront and nearshore paleoenvironments of the Holy Cross Mountains, Poland. We used a number of analytical methods to confirm the presence of chitin preserved in these ancient fossils. This is the first record of chitin preservation in Mesozoic deposits that, interestingly, do not follow the conventional Konservat-Lagerstätten manner of preserving soft-bodied and non-biomineralized organisms. We believe that deltaic settings characterized by episodic, high input of fluvial deposits, oligohaline conditions, and oxygen-poor microenvironment within the sediment—as well as early cementation of sediment infilling the shells—were crucial for chitin preservation. The preservation of chitin in such recalcitrant structures as egg capsules and deposits that formed outside conventional Konservat-Lagerstätten conditions renders it likely similar deposits may yield promise for discoveries of similar biological macromolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.