Abstract. Many relevant processes in tropospheric chemistry take place on rather small scales (e.g., tens to hundreds of meters) but often influence areas of several square kilometer. Thus, measurements of the involved trace gases with high spatial resolution are of great scientific interest. In order to identify individual sources and sinks and ultimately to improve chemical transport models, we developed a new airborne instrument, which is based on the well established Differential Optical Absorption Spectroscopy (DOAS) method. The Heidelberg Airborne Imaging DOAS Instrument (HAIDI) is a passive imaging DOAS spectrometer, which is capable of recording horizontal and vertical trace gas distributions with a resolution of better than 100 m. Observable species include NO 2 , HCHO, C 2 H 2 O 2 , H 2 O, O 3 , O 4 , SO 2 , IO, OClO and BrO.Here we give a technical description of the instrument including its custom-built spectrographs and CCD detectors. Also first results from measurements with the new instrument are presented. These comprise spatial resolved SO 2 and BrO in volcanic plumes, mapped at Mt. Etna (Sicily, Italy), NO 2 emissions in the metropolitan area of Indianapolis (Indiana, USA) as well as BrO and NO 2 distributions measured during arctic springtime in context of the BRomine, Ozone, and Mercury EXperiment (BROMEX) campaign, which was performed 2012 in Barrow (Alaska, USA).
Abstract. Cavity-enhanced differential optical absorption spectroscopy (CE-DOAS or BB-CEAS DOAS) allows us to make in situ measurements while maintaining the kilometre-long light paths required by DOAS. This technique has been successfully used for several years to measure in situ atmospheric trace gases. A property of optical cavities is that in the presence of strong absorbers or scatterers the light path is reduced, in contrast to classical long-path DOAS measurements where the light path is fixed. Typical CE-DOAS or BB-CEAS evaluation schemes correct this effect using the measured total light intensity attenuation. This makes them sensitive to any variations in the light intensity not arising from the trace gas absorption. That means an important DOAS advantage, to be independent of total light intensity, is actually lost. In order to cope with this problem, the instrument setup would require a thorough stabilisation of the light source and a very rigid mechanical setup, which would make instrumentation more complex and error prone. We present a new approach to cavity-enhanced (CE) DOAS based on an iterative algorithm (ICAD) which actually models the light path reduction from the derived absorbers in the optical resonator. It allows a sensitive and robust data analysis that does not depend on the total light intensity, allowing a simpler and more compact instrument setup. The algorithm is discussed and simulated measurements demonstrate its sensitivity and robustness. Furthermore, a new ICAD NO2 instrument is presented. It takes advantage of the advanced data evaluation to build a compact (50 cm cavity) and lightweight instrument (<10 kg) with low power consumption (25 W) for sensitive measurements of NO2 with a detection limit of 0.02 ppbv at an averaging time of 7 min. The instrument is characterised with a NO2 calibration source and good long-term stability is demonstrated in a comparison with a commercial chemiluminescence detector. As a new application of ICAD we show measurements on an automobile platform to investigate the two-dimensional NO2 distribution in an urban area. The instrument is so robust that even strong vibrations do not lead to any measurement problems.
Abstract. In this paper we present an investigation of the spatial and temporal variability of street-level concentrations of NO2 in Hong Kong as an example of a densely populated megacity with heavy traffic. For the study we use a combination of open-path remote sensing and in situ measurement techniques that allows us to separate temporal changes and spatial patterns and analyse them separately. Two measurement campaigns have been conducted, one in December 2010 and one in March 2017. Each campaign lasted for a week which allowed us to examine diurnal cycles, weekly patterns as well as spatially resolved long-term changes. We combined a long-path differential optical absorption spectroscopy (DOAS) instrument with a cavity-enhanced DOAS and applied several normalizations to the data sets in order to make the different measurement routes comparable. For the analysis of long-term changes we used the entire unfiltered data set and for the comparison of spatial patterns we filtered out the accumulation of NO2 when stopping at traffic lights for focusing on the changes of NO2 spatial distribution instead of comparing traffic flow patterns. For the generation of composite maps the diurnal cycle has been normalized by scaling the mobile data with coinciding citywide path-averaged measurement results. An overall descending trend from 2010 to 2017 could be observed, consistent with the observations of the Ozone Monitoring Instrument (OMI) and the Environment Protection Department (EPD) air quality monitoring network data. However, long-term difference maps show pronounced spatial structures with some areas, e.g. around subway stations, revealing an increasing trend. We could also show that the weekend effect, which for the most part of Hong Kong shows reduced NO2 concentrations on Sundays and to a lesser degree on Saturdays, is reversed around shopping malls. Our study shows that spatial differences have to be considered when discussing citywide trends and can be used to put local point measurements into perspective. The resulting data set provides a better insight into on-road NO2 characteristics in Hong Kong, which helps to identify heavily polluted areas and represents a useful database for urban planning and the design of pollution control measures.
Abstract. GANDALF (Gas Analyzer for Nitrogen Dioxide Applying Laser-induced Fluorescence), a new instrument for the detection of nitrogen dioxide based on the laser-induced fluorescence (LIF) technique, is presented in this paper. GANDALF is designed for ground-based and airborne deployment with a robust calibration system. In the current set-up, it uses a multi-mode diode laser (447–450 nm) and performs in situ, continuous, and autonomous measurements with a laser pulse repetition rate of 5 MHz. The performance of GANDALF was tested during the summer of year 2011 (15 August–10 September) in a field experiment at Kleiner Feldberg, Germany. The location is within a forested region with an urban influence, where NOx levels were between 0.12 and 22 parts per billion by volume (ppb). Based on the field results, the limit of detection is estimated at 5–10 parts per trillion by volume (ppt) in 60 s at a signal-to-noise ratio (SNR) of 2. The overall accuracy and precision of the instrument are better than 5 % (1σ) and 0.5 %+3 ppt (1σ min−1), respectively. A comparison of nitrogen dioxide measurements based on several techniques during the field campaign PARADE 2011 is presented to explore methodic differences.
Abstract. Many relevant processes in tropospheric chemistry take place on rather small scales (e.g. tens to hundreds of meters) but often influence areas of several square kilometer. Thus, measurements of the involved trace gases with high spatial resolution are of great scientific interest. In order to identify individual sources and sinks and ultimately to improve chemical transport models, we developed a new airborne instrument, which is based on the well established DOAS method. The Heidelberg Airborne Imaging Differential Optical Absorption Spectrometer Instrument (HAIDI) is a passive imaging DOAS spectrometer, which is capable of recording horizontal and vertical trace gas distributions with a resolution of better than 100 m. Observable species include NO2, HCHO, C2H2O2, H2O, O3, O4, SO2, IO, OClO and BrO. Here we report a technical description of the instrument including its custom build spectrographs and CCD detectors. Also first results from measurements with the new instrument are presented. These comprise spatial resolved SO2 and BrO in volcanic plumes, mapped at Mt. Etna (Sicily, Italy), NO2 emissions in the metropolitan area of Indianapolis (Indiana, USA) as well as BrO and NO2 distributions measured during arctic springtime in context of the BROMEX campaign, which was performed 2012 in Barrow (Alaska, USA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.