Background: Deficits characteristic of attention deficit/hyperactivity disorder (ADHD), including poor attention and inhibitory control, are at least partially alleviated by factors that increase engagement of attention, suggesting a hypodopaminergic reward deficit. Lapses of attention are associated with attenuated deactivation of the default mode network (DMN), a distributed brain system normally deactivated during tasks requiring attention to the external world. Task-related DMN deactivation has been shown to be attenuated in ADHD relative to controls. We hypothesised that motivational incentives to balance speed against restraint would increase task engagement during an inhibitory control task, enhancing DMN deactivation in ADHD. We also hypothesised that methylphenidate, an indirect dopamine agonist, would tend to normalise abnormal patterns of DMN deactivation. Method: We obtained functional magnetic resonance images from 18 methylphenidate-responsive children with ADHD (DSM-IV combined subtype) and 18 pairwise-matched typically developing children aged 9-15 years while they performed a paced Go/No-go task. We manipulated motivational incentive to balance response speed against inhibitory control, and tested children with ADHD both on and off methylphenidate. Results: When children with ADHD were off-methylphenidate and task incentive was low, event-related DMN deactivation was significantly attenuated compared to controls, but the two groups did not differ under high motivational incentives. The modulation of DMN deactivation by incentive in the children with ADHD, off-methylphenidate, was statistically significant, and significantly greater than in typically developing children. When children with ADHD were on-methylphenidate, motivational modulation of event-related DMN deactivation was abolished, and no attenuation relative to their typically developing peers was apparent in either motivational condition. Conclusions: During an inhibitory control task, children with ADHD exhibit a raised motivational threshold at which taskrelevant stimuli become sufficiently salient to deactivate the DMN. Treatment with methylphenidate normalises this threshold, rendering their pattern of task-related DMN deactivation indistinguishable from that of typically developing children.
Background Routine outcome measurement (ROM) in CAMHS is supported by U.K. Government policy. However, little is known about how measures are used in practice. Method Data describing use of ROM, knowledge and attitudes regarding implementation were collected using a regional case‐note audit, online survey and stakeholder workshop. Results While the principle of ROM was supported by stakeholders, baseline and follow‐up outcome measurement occurred in less than a fifth of cases. Barriers to implementation included lack of training and resources, clinicians' perceptions of the limitations of existing measures and lack of regular feedback of outcome data. Conclusions Implementation of ROM may be facilitated by session‐by‐session measures with immediate feedback to clinicians and patients.
ObjectivePrevious studies have shown smaller brain volume and less gray matter in children with attention-deficit/hyperactivity disorder (ADHD). Relatively few morphological studies have examined structures thought to subserve inhibitory control, one of the diagnostic features of ADHD. We examined one such region, the pars opercularis, predicting a thinner cortex of the inferior frontal gyrus (IFG) in children with ADHD.MethodStructural images were obtained from 49 children (24 control; 25 ADHD combined subtype) aged 9 though 15 years. Images were processed using a volumetric pipeline to provide a fully automated estimate of regional volumes of gray and white matter. A further analysis using FreeSurfer provided measures of cortical thickness for each lobe, and for 13 regions in the frontal lobe.ResultsRelative to controls, children with ADHD had smaller whole brain volume and lower gray matter, but not white matter, volumes in all lobes. An analysis of frontal regions showed a significant interaction of group by region. Planned contrasts showed bilateral thinner cortex in the pars opercularis in children with ADHD.ConclusionsChildren with ADHD showed both diffuse and regional gray matter abnormalities. Consistent with its putative role in response inhibition, the cortex of the pars opercularis was thinner in children with ADHD who, as expected, had significantly poorer inhibitory performance on a Go/No-go task. These differences held for both hemispheres raising the possibility that a developmental abnormality of IFG might drive development of inhibition difficulties.
BackgroundTheories of attention-deficit/hyperactivity disorder (ADHD) posit either executive deficits and/or alterations in motivational style and reward processing as core to the disorder. Effects of motivational incentives on electrophysiological correlates of inhibitory control and relationships between motivation and stimulant medication have not been explicitly tested.MethodsChildren (9–15 years) with combined-type ADHD (n = 28) and matched typically developing children (CTRL) (n = 28) performed a go/no-go task. Electroencephalogram data were recorded. Amplitude of two event-related potentials, the N2 and P3 (markers of response conflict and attention), were measured. The ADHD children were all stimulant responders tested on and off their usual dose of methylphenidate; CTRLs were never medicated. All children performed the task under three motivational conditions: reward; response cost; and baseline, in which points awarded/deducted for inhibitory performance varied.ResultsThere were effects of diagnosis (CTRL > ADHD unmedicated), medication (on > off), and motivation (reward and/or response cost > baseline) on N2 and P3 amplitude, although the N2 diagnosis effect did not reach statistical significance (p = .1). Interactions between motivation and diagnosis/medication were nonsignificant (p > .1).ConclusionsMotivational incentives increased amplitudes of electrophysiological correlates of response conflict and attention in children with ADHD, towards the baseline (low motivation) amplitudes of control subjects. These results suggest that, on these measures, motivational incentives have similar effects in children with ADHD as typically developing CTRLs and have additive effects with stimulant medication, enhancing stimulus salience and allocation of attentional resources during response inhibition.
Background: The NICE ADHD Guideline Group found a lack of research evidence on young peopleÕs experiences with stimulant medications. The present study was commissioned to help fill this gap in the evidence base and to inform the Guideline. Method: Focus groups and 1:1 interviews with 16 UK young people with ADHD. Results: Young people were positive about taking medication, feeling that it reduced their disruptive behaviour and improved their peer relationships. Young people experienced stigma but this was related more to their symptomatic behaviours than to stimulant drug medication. Conclusions: The studyÕs findings helped to inform the NICE guideline on ADHD by providing evidence that young peopleÕs experiences of medication were in general more positive than negative. All NICE Guidelines involving recommendations for the treatment of young people should draw on research evidence of young peopleÕs experiences of treatments. Key Practitioner Message:• Young people who are already taking stimulant medication are more positive about medication than about other interventions • Young people are more likely to be aware of a positive impact of medication in their social relationships than in other areas such as academic performance • Young peopleÕs experiences of bullying are more often connected to their ADHD behaviours than to taking tablets.• Close friendships are important to young people with ADHD and are sometimes used to protect them from bullying and in other difficult situations • Young people with ADHD believe that physical activity is helpful to them and of those activities sports (especially boxing) are most helpful
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.