Here, we propose a fully-metallic implementation of a Luneburg lens operating at Ka-band with potential use for 5G communications. The lens is implemented with a parallel plate that is loaded with glide-symmetric holes. These holes are employed to produce the required equivalent refractive index profile of a Luneburg lens. Glide symmetry and inner metallic pins are employed to increase the equivalent refractive index. The lens is fed with rectangular waveguides designed to match the height of the parallel plate, and it is ended with a flare to minimize the reflections.
The purpose of this paper is to investigate the use of equivalent-layer models for the analysis of carbon-fiber composite materials. In this paper, we present three different models for the electromagnetic characterization (effective material properties) of fiber composites that are commonly used in aircraft and EMC/EMI shielding materials. These three models represent various orders (or levels) of detail in the fiber composite structure and, hence, capture various physical aspects of the composite. These models can be used to efficiently calculate the reflection and transmission coefficients, as well as the shielding effectiveness, of these fiber composites. We compare results of the reflection coefficient and shielding effectiveness obtained from these effective-property models to results obtained from a full numerical solution based on the finite-element (FE) method of the actual periodic fiber composite. We show that, as expected, as more of the geometric detail of the fiber composite is captured with the different models, the upper frequency limit of validity increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.