This paper describes the new cell-aware test (CAT) approach, which enables a transistor-level and defect-based ATPG on full CMOS-based designs to significantly reduce the defect rate of manufactured ICs, including FinFET technologies. We present results from a defect-oriented CAT fault model generation for 1,940 standard library cells, as well as the application of CAT to several industrial designs. We present high volume production test results from a 32 nm notebook processor and from a 350 nm automotive design, including the achieved defect rate reduction in defective-parts-per-million. We also present CAT diagnosis and physical failure analysis results from one failing part and give an outlook for using the functionality for quickly ramping up the yield in advanced technology nodes.Index Terms-Automatic test pattern generation, cell-aware test, defect-based test, defective parts, design for testability, failure analysis, FinFET test, logic testing, test data compression, transistor-level test.
We present a fully automated flow to generate test patterns for interconnect open defects. Both inter-layer opens (openvia defects) and arbitrary intra-layer opens can be targeted. An aggressor-victim model used in industry is employed to describe the electrical behavior of the open defect. The flow is implemented using standard commercial tools for parameter extraction (PEX) and test generation (ATPG). A highly optimized branch-and bound algorithm to determine the values to be assigned to the aggressor lines is used to reduce both the ATPG efforts and the number of aborts.The resulting test sets are smaller and achieve a higher defect coverage than stuck-at n-detection test sets, and are robust against process variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.