The genome of the human intracellular pathogen Mycobacterium tuberculosis encodes an unusually large number of epoxide hydrolases, which are thought to be involved in lipid metabolism and detoxification reactions needed to endure the hostile environment of host macrophages. These enzymes therefore represent suitable targets for compounds such as urea derivatives, which are known inhibitors of soluble epoxide hydrolases. In this work, we studied in vitro the effect of the thiourea drug isoxyl on six epoxide hydrolases of M. tuberculosis using a fatty acid substrate. We show that one of the proteins inhibited by isoxyl is EphD, an enzyme involved in the metabolism of mycolic acids, key components of the mycobacterial cell wall. By analyzing mycolic acid profiles, we demonstrate the inhibition of EphD epoxide hydrolase activity by isoxyl and two other urea-based inhibitors, thiacetazone and AU1235, inside the mycobacterial cell.
Consumption of polyunsaturated fatty acids (PUFAs) has been shown to be beneficial in the restoration of insulin sensitivity. It has become clear that n-3 and n-6 PUFAs act at the nuclear level to affect expression of genes involved in metabolic pathways. PUFAs act via transcription factors such as PPARs and sterol-regulatory-element-binding proteins (SREBPs) to affect transcription of genes involved in lipogenesis and fatty acid oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.