Biodegradable stents are promising treatments for many diseases, e.g., coronary artery disease, urethral diseases, tracheal diseases, and esophageal strictures. The mechanical properties of biodegradable stent materials play a key role in the safety and efficacy of treatment. In particular, insufficient creep resistance of the stent material could result in premature stent collapse or narrowing. Commercially available biodegradable self-expandable SX-ELLA stents made of polydioxanone monofilament were tested. A new, simple, and affordable method to measure the shear modulus of tiny viscoelastic wires is presented. The important mechanical parameters of the polydioxanone filament were obtained: the median Young's modulus wasẼ = 958 (922, 974) MPa and the shear modulus wasG = 357 (185, 387) MPa, resulting in a Poisson's ratio of ν = 0.34. The SX-ELLA stents exhibited significant force relaxation due to the stress relaxation of the polydioxanone monofilament, approximately 19% and 36% 10 min and 48 h after stent application, respectively. However, these results were expected, and the manufacturer and implanting clinician should be aware of the known behavior of these biodegradable materials. If possible, a biodegradable stent should be designed considering therapeutic force rather than initial force. Additionally, new and more advanced biodegradable shape-memory polymers should be considered for future study and use.
Background: Low-dose-rate brachytherapy is an effective organ-sparing treatment for patients with early-stage penile cancer. However, only limited data are available on the role of high-dose-rate brachytherapy (HDR-BT) in this clinical setting. Methods: Between 2002 and 2020, 31 patients with early penile cancer were treated at our center with interstitial HDR BT at a dose of 18 × 3 Gy twice daily. A breast brachytherapy template was used for the fixation of stainless hollow needles. Results: The median follow-up was 117.5 months (range, 5–210). Eight patients (25.8%) developed a recurrence; of these, seven were salvaged by partial amputation. Six patients died of internal comorbidities or a second cancer. The probability of local control at 5 and 10 years was 80.7% (95% CI: 63.7–97.7%) and 68.3% (95% CI: 44.0–92.6%), respectively. Cause-specific survival was 100%. Only one case of radiation-induced necrosis was observed. The probability of penile sparing at 5 and 10 years was 80.6% (95% CI: 63.45–97.7%) and 62.1% (95% CI: 34.8–89.4%), respectively. Conclusions: These results show that HDR-BT for penile cancer can achieve results comparable to LDR-BT with organ sparing. Despite the relatively large patient cohort—the second largest reported to date in this clinical setting—prospective data from larger samples are needed to confirm the role of HDR-BT in penile cancer.
Background In severe conditions of limited motor abilities, frequent position changes for work or passive and active rest are essential bedside activities to prevent further health complications. We aimed to develop a system using eye movements for bed positioning and to verify its functionality in a control group and a group of patients with significant motor limitation caused by multiple sclerosis. Methods The eye-tracking system utilized an innovative digital-to-analog converter module to control the positioning bed via a novel graphical user interface. We verified the ergonomics and usability of the system by performing a fixed sequence of positioning tasks, in which the leg and head support was repeatedly raised and then lowered. Fifteen women and eleven men aged 42.7 ± 15.9 years in the control group and nine women and eight men aged 60.3 ± 9.14 years in the patient group participated in the experiment. The degree of disability, according to the Expanded Disability Status Scale (EDSS), ranged from 7 to 9.5 points in the patients. We assessed the speed and efficiency of the bed control and the improvement during testing. In a questionnaire, we evaluated satisfaction with the system. Results The control group mastered the task in 40.2 s (median) with an interquartile interval from 34.5 to 45.5 s, and patients mastered the task in in 56.5 (median) with an interquartile interval from 46.5 to 64.9 s. The efficiency of solving the task (100% corresponds to an optimal performance) was 86.3 (81.6; 91.0) % for the control group and 72.1 (63.0; 75.2) % for the patient group. Throughout testing, the patients learned to communicate with the system, and their efficiency and task time improved. A correlation analysis showed a negative relationship (rho = − 0.587) between efficiency improvement and the degree of impairment (EDSS). In the control group, the learning was not significant. On the questionnaire survey, sixteen patients reported gaining confidence in bed control. Seven patients preferred the offered form of bed control, and in six cases, they would choose another form of interface. Conclusions The proposed system and communication through eye movements are reliable for positioning the bed in people affected by advanced multiple sclerosis. Seven of 17 patients indicated that they would choose this system for bed control and wished to extend it for another application.
Due to a broad spectrum of endodontic rotary instruments on the market and no standardised protocol for comparing their mechanical properties, it can be challenging for clinician to choose proper instruments. In vitro studies using resin blocks with artificial canals can offer many valuable information because of their uniformity compared to studies performed on extracted teeth. To improve precision and reproducibility of artificial canals, 3D printing was used in this study to manufacture endodontic test block samples. 20 commercially available endodontic blocks Endo-Training-Bloc-J by Dentsply Sirona were tested. The mean values of the measured parameters were used for a 3D CAD model of their replicas. 20 copies of the endodontic training blocks were printed from acrylic resin (VeroClear-RGD810, Stratasys, Eden Prairie, USA) using the 3D printer Objet30 Pro (Stratasys, Eden Prairie, USA). The key dimensions of the commercial blocks and the 3D printed blocks were measured under and compared using t – test and Levene’s test for equality of variances. The profiles of the 3D printed artificial canals showed significantly lower dimensional variability when compared with the commercial blocks. 3D polyjet printing proved to be a precise and reproducible method for production of blocks for testing endodontic rotary instruments.
Abstract-The Moodle portal of our faculty is running in a virtualized environment together with other about 50 application servers and 60 virtualized desktops. Increasing traffic on the site (reaching over 400 000 views/posts monthly) forced us to assess its performance impact on the virtualization environment. The performance analysis identified processor cycles and disk operations as the bottlenecks of the system. We are planning to address these issues with increasing of the number of processor cores in our virtualization hosts and with a solid state disk upgrade of the disk array used in our virtualization environment in our next hardware upgrade cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.