BackgroundDriving retraining classes may offer an opportunity to attenuate some effects of aging that may alter driving skills. Unfortunately, there is evidence that classroom programs (driving refresher courses) do not improve the driving performance of older drivers. The aim of the current study was to evaluate if simulator training sessions with video-based feedback can modify visual search behaviors of older drivers while changing lanes in urban driving.MethodsIn order to evaluate the effectiveness of the video-based feedback training, 10 older drivers who received a driving refresher course and feedback about their driving performance were tested with an on-road standardized evaluation before and after participating to a simulator training program (Feedback group). Their results were compared to a Control group (12 older drivers) who received the same refresher course and in-simulator active practice as the Feedback group without receiving driving-specific feedback.ResultsAfter attending the training program, the Control group showed no increase in the frequency of the visual inspection of three regions of interests (rear view and left side mirrors, and blind spot). In contrast, for the Feedback group, combining active training and driving-specific feedbacks increased the frequency of blind spot inspection by 100% (32.3 to 64.9% of verification before changing lanes).ConclusionsThese results suggest that simulator training combined with driving-specific feedbacks helped older drivers to improve their visual inspection strategies, and that in-simulator training transferred positively to on-road driving. In order to be effective, it is claimed that driving programs should include active practice sessions with driving-specific feedbacks. Simulators offer a unique environment for developing such programs adapted to older drivers' needs.
Objective We examine the relationships between contemporary progress in on‐road vehicle automation and its coherence with an envisioned “autopia” (automobile utopia) whereby the vehicle operation task is removed from all direct human control. Background The progressive automation of on‐road vehicles toward a completely driverless state is determined by the integration of technological advances into the private automobile market; improvements in transportation infrastructure and systems efficiencies; and the vision of future driving as a crash‐free enterprise. While there are many challenges to address with respect to automated vehicles concerning the remaining driver role, a considerable amount of technology is already present in vehicles and is advancing rapidly. Methods A multidisciplinary team of experts met to discuss the most critical challenges in the changing role of the driver, and associated safety issues, during the transitional phase of vehicle automation where human drivers continue to have an important but truncated role in monitoring and supervising vehicle operations. Results The group endorsed that vehicle automation is an important application of information technology, not only because of its impact on transportation efficiency, but also because road transport is a life critical system in which failures result in deaths and injuries. Five critical challenges were identified: driver independence and mobility, driver acceptance and trust, failure management, third-party testing, and political support. Conclusion Vehicle automation is not technical innovation alone, but is a social as much as a technological revolution consisting of both attendant costs and concomitant benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.