Though previous findings report that hearing impaired children exhibit impaired language and arithmetic skills, our current understanding of how hearing and the associated language impairments may influence the development of arithmetic skills is still limited. In the current study numerical/arithmetic performance of 45 children with a cochlea implant were compared to that of controls matched for hearing age, intelligence and sex. Our main results were twofold disclosing that children with CI show general as well as specific numerical/arithmetic impairments. On the one hand, we found an increased percentage of children with CI with an indication of dyscalculia symptoms, a general slowing in multiplication and subtraction as well as less accurate number line estimations. On the other hand, however, children with CI exhibited very circumscribed difficulties associated with place-value processing. Performance declined specifically when subtraction required a borrow procedure and number line estimation required the integration of units, tens, and hundreds instead of only units and tens. Thus, it seems that despite initially atypical language development, children with CI are able to acquire arithmetic skills in a qualitatively similar fashion as their normal hearing peers. Nonetheless, when demands on place-value understanding, which has only recently been proposed to be language mediated, hearing impaired children experience specific difficulties.
Usually damped structures, consisting of a constrained layer damping (CLD) and free layer damping (FLD) design, are characterized via dynamic mechanic analysis (DMA) in bending mode. Since laminates with thicknesses from 10 to 100 μm exhibit a very low bending stiffness it isn’t possible to determine their damping properties in bending mode with standard DMA setups. Therefore in the present work the main objective was to introduce a new method to overcome this drawback.
Two main geometries were used, such as a variation of the bending mode where the laminates were clamped at the outer supports and on the other hand a set-up where the geometry of a support of loudspeakers was replicated, which was called “speaker” mode. The damping behavior of the laminates then was characterized via the mechanical loss factor tan δ and subsequently compared to results in DMA shear mode. The second objective was to characterize the influence of the design, with a 2-layer laminate consisting of a free layer damping design and a 3-layer laminate with a constrained layer damping design.
A method in DMA “speaker” mode was successfully set up. The test parameters were chosen in order to resemble the support of loudspeakers. Therefore with the laminates two beads with a height of approximately 1 mm were formed symmetrically in gaps of 3 mm between the outer fixtures and the drive shaft. Furthermore in the test the laminates were loaded with a dynamic displacement of 600 μm. Due to the low bending stiffness of the laminates the highest test frequency was limited to 10 Hz. In accordance with literature for the 2-layer laminates significant lower damping levels were found than for the 3-layer laminates. Whereas the constrained layer damping laminate (3-layer) showed a good correlation between measurements in “speaker” and in shear mode, the 2-layer laminate showed a significant loss factor increase at high temperatures in shear mode, which was related to entropy elastic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.