This paper presents a method for obstructive sleep apnea (OSA) screening based on the electrocardiogram (ECG) recording during sleep. OSA is a common sleep disorder produced by repetitive occlusions in the upper airways and this phenomenon can usually be observed also in other peripheral systems such as the cardiovascular system. Then the extraction of ECG characteristics, such as the RR intervals and the area of the QRS complex, is useful to evaluate the sleep apnea in noninvasive way. In the presented analysis, 50 recordings coming from the apnea Physionet database were used; data were split into two sets, the training and the testing set, each of which was composed of 25 recordings. A bivariate time-varying autoregressive model (TVAM) was used to evaluate beat-by-beat power spectral densities for both the RR intervals and the QRS complex areas. Temporal and spectral features were changed on a minute-by-minute basis since apnea annotations where given with this resolution. The training set consisted of 4950 apneic and 7127 nonapneic minutes while the testing set had 4428 apneic and 7927 nonapneic minutes. The K-nearest neighbor (KNN) and neural networks (NN) supervised learning classifiers were employed to classify apnea and non apnea minutes. A sequential forward selection was used to select the best feature subset in a wrapper setting. With ten features the KNN algorithm reached an accuracy of 88%, sensitivity equal to 85%, and specificity up to 90%, while NN reached accuracy equal to 88%, sensitivity equal to 89% and specificity equal to 86%. In addition to the minute-by-minute classification, the results showed that the two classifiers are able to separate entirely (100%) the normal recordings from the apneic recordings. Finally, an additional database with eight recordings annotated as normal or apneic was used to test again the classifiers. Also in this new dataset, the results showed a complete separation between apneic and normal recordings.
We describe a system for the evaluation of the sleep macrostructure on the basis of Emfit sensor foils placed into bed mattress and of advanced signal processing. The signals on which the analysis is based are heart-beat interval (HBI) and movement activity obtained from the bed sensor, the relevant features and parameters obtained through a time-variant autoregressive model (TVAM) used as feature extractor, and the classification obtained through a hidden Markov model (HMM). Parameters coming from the joint probability of the HBI features were used as input to a HMM, while movement features are used for wake period detection. A total of 18 recordings from healthy subjects, including also reference polysomnography, were used for the validation of the system. When compared to wake-nonrapid-eye-movement (NREM)-REM classification provided by experts, the described system achieved a total accuracy of 79+/-9% and a kappa index of 0.43+/-0.17 with only two HBI features and one movement parameter, and a total accuracy of 79+/-10% and a kappa index of 0.44+/-0.19 with three HBI features and one movement parameter. These results suggest that the combination of HBI and movement features could be a suitable alternative for sleep staging with the advantage of low cost and simplicity.
An alternative DSS which models the behaviour of the Heart Rate Variability (HRV) signal linked to stable (NREM) and instable (REM) cerebral waves during sleep and a probabilistic model of the sleep stages transitions for decision was developed. Time-Varying Autoregressive Models (TVAMs) were used as feature extractor while Hidden Markov Models (HMM) was used as time series classifier. 24 full polysomnography recordings from healthy sleepers were used for the analysis and those were separated in two sets of Sleep staging from Heart Rate Variability 247 12 each: training and test set. The classification performance for the test set was specificity = 0.851, accuracy = 0.793 and sensitivity = 0.702.
This study analyses two different methods to detect obstructive sleep apnea (OSA) during sleep time based only on the ECG signal. OSA is a common sleep disorder caused by repetitive occlusions of the upper airways, which produces a characteristic pattern on the ECG. ECG features, such as the heart rate variability (HRV) and the QRS peak area, contain information suitable for making a fast, non-invasive and simple screening of sleep apnea. Fifty recordings freely available on Physionet have been included in this analysis, subdivided in a training and in a testing set. We investigated the possibility of using the recently proposed method of empirical mode decomposition (EMD) for this application, comparing the results with the ones obtained through the well-established wavelet analysis (WA). By these decomposition techniques, several features have been extracted from the ECG signal and complemented with a series of standard HRV time domain measures. The best performing feature subset, selected through a sequential feature selection (SFS) method, was used as the input of linear and quadratic discriminant classifiers. In this way we were able to classify the signals on a minute-by-minute basis as apneic or nonapneic with different best-subset sizes, obtaining an accuracy up to 89% with WA and 85% with EMD. Furthermore, 100% correct discrimination of apneic patients from normal subjects was achieved independently of the feature extractor. Finally, the same procedure was repeated by pooling features from standard HRV time domain, EMD and WA together in order to investigate if the two decomposition techniques could provide complementary features. The obtained accuracy was 89%, similarly to the one achieved using only Wavelet analysis as the feature extractor; however, some complementary features in EMD and WA are evident.
In this paper, an analysis of heart rate variability (HRV) during decreases in the amplitude fluctuations of photopletysmography (PPG) [decreases in the amplitude fluctuations of photopletysmography (DAP)] events for obstructive sleep apnea syndrome (OSAS) screening is presented. Two hundred and sixty-eight selected signal segments around the DAP event were extracted and classified in five groups depending on SaO (2) and respiratory behavior. Four windows around each DAP are defined and temporal evolution of time-frequency HRV parameters was analyzed for OSAS screening. Results show a significant increase in sympathetic activity during DAP events, which is higher in cases associated with apnea. DAP events were classified as apneic or nonapneic using a linear discriminant analysis from the HRV indexes. The ratio of DAP events per hour r(DAP) and the ratio of apneic DAP events per hour r(DAP)(a) were computed. Results show an accuracy of 79% for r(DAP)(a) (12% increase with respect to r(DAP)), a sensitivity of 87.5%, and a specificity of 71.4% when classifying 1-h polysomnographic excerpts. As for clinical subject classification, an accuracy of 80% (improvement of 6.7% ), a sensitivity of 87.5%, and a specificity of 71.4% are reached. These results suggest that the combination of DAP and HRV could be an improved alternative for sleep apnea screening from PPG with the added benefit of its low cost and simplicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.