Focused ion beam (FIB) tools for backside circuit edit play a major role in the validation of integrated circuit (IC) design modifications. Process scaling is one of many significant challenges, because it reduces the accessible area to modify transistors and IC interconnects in the design. This paper examines the geometries available for FIB nanomachining, via milling/etching, and deposited metal jumpers by analyzing polygon data from computer aided design (CAD) virtual layers gathered across four process technologies, from 180nm down to 28nm. The results of this analysis demonstrate that the combination of silicon nanomachining box length and FIB via box length identifies the most challenging aspects of the FIB edit. The smallest geometries include a 300 nanometer silicon access area with a FIB milled 200 nanometer via inside it. More advanced technology nodes will require the ability to make smaller geometries without the help of integrated design features typically referred to as design for FIB/Debug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.