In short-term production management of the Internet of Production (IoP) the vision of a Production Control Center is pursued, in which interlinked decision-support applications contribute to increasing decision-making quality and speed. The applications developed focus in particular on use cases near the shop floor with an emphasis on the key topics of production planning and control, production system configuration, and quality control loops.Within the Predictive Quality application, predictive models are used to derive insights from production data and subsequently improve the process- and product-related quality as well as enable automated Root Cause Analysis. The Parameter Prediction application uses invertible neural networks to predict process parameters that can be used to produce components with desired quality properties. The application Production Scheduling investigates the feasibility of applying reinforcement learning to common scheduling tasks in production and compares the performance of trained reinforcement learning agents to traditional methods. In the two applications Deviation Detection and Process Analyzer, the potentials of process mining in the context of production management are investigated. While the Deviation Detection application is designed to identify and mitigate performance and compliance deviations in production systems, the Process Analyzer concept enables the semi-automated detection of weaknesses in business and production processes utilizing event logs.With regard to the overall vision of the IoP, the developed applications contribute significantly to the intended interdisciplinary of production and information technology. For example, application-specific digital shadows are drafted based on the ongoing research work, and the applications are prototypically embedded in the IoP.
Die verarbeitende Industrie in Deutschland steht vor der Transformation von der bisher vorherrschenden ökonomisch orientierten Produktion hin zu einer nachhaltigen Produktion. Durch die Anpassung von Parametern der Produktionsplanung und -steuerung, wie z. B. der Losgröße durch u. a. der Konsolidierung von Transportaufwänden oder geringen Reinigungsaufwänden, kann dabei eine nachhaltigere Produktion erreicht werden. Hierfür wurde mittels einer systematischen Methodik ein Digitaler Schatten konzeptioniert, der eine nachhaltige Konfiguration von Losgrößen ermöglicht. Dafür erfolgen eine Aggregation von Daten aus verschiedenen Informationssystemen und die Simulation des Verhaltens eines Produktionssystems bei veränderten Losgrößen. Diese ermöglichen eine optimierte Auslegung der Losgröße basierend auf ökonomischen und ökologischen Zielgrößen.
Um in komplexen Wertschöpfungsnetzwerken und an der Schnittstelle zwischen Kunden und Lieferanten valide, datenbasierte Entscheidungen treffen zu können, muss eine hohe Datenqualität vorliegen. Dabei mangelt es oft an einem Datenqualitätsmanagement (DQM), das den konkreten Anwendungsfall und den überbetrieblichen Austausch berücksichtigt. Wir stellen ein universales Rahmenwerk für das überbetriebliche DQM vor, das Ziele, Prozesse, relevante Daten und Akteure erfasst und den Grundstein für eine ganzheitliche Datenqualitätsstrategie legt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.