The human heart is enclosed in the pericardial cavity. The pericardium consists of a layered thin sac and is separated from the myocardium by a thin film of fluid. It provides a fixture in space and frictionless sliding of the myocardium. The influence of the pericardium is essential for predictive mechanical simulations of the heart. However, there is no consensus on physiologically correct and computationally tractable pericardial boundary conditions. Here we propose to model the pericardial influence as a parallel spring and dashpot acting in normal direction to the epicardium. Using a four-chamber geometry, we compare a model with pericardial boundary conditions to a model with fixated apex. The influence of pericardial stiffness is demonstrated in a parametric study. Comparing simulation results to measurements from cine magnetic resonance imaging reveals that adding pericardial boundary conditions yields a better approximation with respect to atrioventricular plane displacement, atrial filling, and overall spatial approximation error. We demonstrate that this simple model of pericardial-myocardial inter-M. R. Pfaller * joint last authors action can correctly predict the pumping mechanisms of the heart as previously assessed in clinical studies. Utilizing a pericardial model can not only provide much more realistic cardiac mechanics simulations but also allows new insights into pericardial-myocardial interaction which cannot be assessed in clinical measurements yet.
Progressive airflow obstruction is a classical hallmark of chronic lung disease, affecting more than one fourth of the adult population. As the disease progresses, the inner layer of the airway wall grows, folds inwards, and narrows the lumen. The critical failure conditions for airway folding have been studied intensely for idealized circular cross-sections. However, the role of airway branching during this process is unknown. Here, we show that the geometry of the bronchial tree plays a crucial role in chronic airway obstruction and that critical failure conditions vary significantly along a branching airway segment. We perform systematic parametric studies for varying airway cross-sections using a computational model for mucosal thickening based on the theory of finite growth. Our simulations indicate that smaller airways are at a higher risk of narrowing than larger airways and that regions away from a branch narrow more drastically than regions close to a branch. These results agree with clinical observations and could help explain the underlying mechanisms of progressive airway obstruction. Understanding growth-induced instabilities in constrained geometries has immediate biomedical applications beyond asthma and chronic bronchitis in the diagnostics and treatment of chronic gastritis, obstructive sleep apnea and breast cancer.
Predictive high-fidelity finite element simulations of human cardiac mechanics commonly require a large number of structural degrees of freedom. Additionally, these models are often coupled with lumped-parameter models of hemodynamics. High computational demands, however, slow down model calibration and therefore limit the use of cardiac simulations in clinical practice. As cardiac models rely on several patient-specific parameters, just one solution corresponding to one specific parameter set does not at all meet clinical demands. Moreover, while solving the nonlinear problem, 90% of the computation time is spent solving linear systems of equations. We propose to reduce the structural dimension of a monolithically coupled structure-Windkessel system by projection onto a lower-dimensional subspace. We obtain a good approximation of the displacement field as well as of key scalar cardiac outputs even with very few reduced degrees of freedom, while achieving considerable speedups. For subspace generation, we use proper orthogonal decomposition of displacement snapshots. Following a brief comparison of subspace interpolation methods, we demonstrate how projection-based model order reduction can be easily integrated into a gradient-based optimization.We demonstrate the performance of our method in a real-world multivariate inverse analysis scenario. Using the presented projection-based model order reduction approach can significantly speed up model personalization and could be used for many-query tasks in a clinical setting.cardiac mechanics, inverse analysis, parametric model order reduction, proper orthogonal decomposition 1 | INTRODUCTION Cardiac solid mechanics simulations consist of solving large-deformation, materially nonlinear, elastodynamic coupled boundary-value problems. There exist different approaches to incorporate blood flow into the computational model. Three-dimensional fluid-structure interaction is resolved for example in References 1 and 2. As the exact fluid dynamics of blood within the heart are, however, usually not needed, the structural model is commonly coupled to | Model order reductionThe needed huge number of degrees of freedom (DOFs) and other challenges of solving nonlinear problems make the solution of cardiac models computationally expensive and limit the models' use in clinical practice. For example, using a single node with 24 cores, a simulation of one heartbeat, which takes about 1 s in reality, takes about 1 d to compute with our high-fidelity four chamber model. 9 The potential to reduce computation time motivates the use of reduced order models (ROMs). In this work, we solely consider model order reduction (MOR) of time-dependent parametric problems. In the following, different strategies in reduced order modeling are reviewed.An important category of cardiac ROMs is made up by simplified modeling. For these models, the same system of differential equations as for the full order model (FOM) is solved, but on a simplified analytical geometry. The displacements are commonly param...
We are interested in a reduced order method for the efficient simulation of blood flow in arteries. The blood dynamics is modeled by means of the incompressible Navier–Stokes equations. Our algorithm is based on an approximated domain-decomposition of the target geometry into a number of subdomains obtained from the parametrized deformation of geometrical building blocks (e.g., straight tubes and model bifurcations). On each of these building blocks, we build a set of spectral functions by Proper Orthogonal Decomposition of a large number of snapshots of finite element solutions (offline phase). The global solution of the Navier–Stokes equations on a target geometry is then found by coupling linear combinations of these local basis functions by means of spectral Lagrange multipliers (online phase). Being that the number of reduced degrees of freedom is considerably smaller than their finite element counterpart, this approach allows us to significantly decrease the size of the linear system to be solved in each iteration of the Newton–Raphson algorithm. We achieve large speedups with respect to the full order simulation (in our numerical experiments, the gain is at least of one order of magnitude and grows inversely with respect to the reduced basis size), whilst still retaining satisfactory accuracy for most cardiovascular simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.