We present an algorithm for computing depthoptimal decompositions of logical operations, leveraging a meetin-the-middle technique to provide a significant speedup over simple brute force algorithms. As an illustration of our method, we implemented this algorithm and found factorizations of commonly used quantum logical operations into elementary gates in the Clifford+T set. In particular, we report a decomposition of the Toffoli gate over the set of Clifford and T gates. Our decomposition achieves a total T -depth of 3, thereby providing a 40% reduction over the previously best known decomposition for the Toffoli gate. Due to the size of the search space, the algorithm is only practical for small parameters, such as the number of qubits, and the number of gates in an optimal implementation. Index Terms-Brute force search, meet-in-the-middle, quantum circuit optimization, quantum circuit synthesis.
We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based on different technology platforms. One is a publicly accessible superconducting transmon device (www.research.ibm.com/ibm-q) with limited connectivity, and the other is a fully connected trapped-ion system. Even though the two systems have different native quantum interactions, both can be programed in a way that is blind to the underlying hardware, thus allowing a comparison of identical quantum algorithms between different physical systems. We show that quantum algorithms and circuits that use more connectivity clearly benefit from a better-connected system of qubits. Although the quantum systems here are not yet large enough to eclipse classical computers, this experiment exposes critical factors of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the results suggest that codesigning particular quantum applications with the hardware itself will be paramount in successfully using quantum computers in the future.quantum computing | quantum information | quantum information science | quantum physics | quantum computing architecture I nspired by the vast computing power a universal quantum computer could offer, several candidate systems are being explored. They have allowed experimental demonstrations of quantum gates, operations, and algorithms of ever-increasing sophistication. Recently, two architectures, superconducting transmon qubits (1-5) and trapped ions (6, 7), have reached a new level of maturity. They have become fully programmable multiqubit machines that provide the user with the flexibility to implement arbitrary quantum circuits from a high-level interface. This makes it possible for the first time to test quantum computers irrespective of their particular physical implementation.Whereas the quantum computers considered here are still small scale and their capabilities do not currently reach beyond small demonstration algorithms, this line of inquiry can still provide useful insights into the performance of existing systems and the role of architecture in quantum computer design. These will be crucial for the realization of more advanced future incarnations of the present technologies.The standard abstract model of quantum computation assumes that interactions between arbitrary pairs of qubits are available. However, physical architectures will in general have certain constraints on qubit connectivity, such as nearest-neighbor couplings only. These restrictions do not in principle limit the ability to perform arbitrary computations, because swap operations may be used to effect gates between arbitrary qubits using the connections available. For a general circuit, reducing a fully connected system to the more sparse star-shaped or linear nearestneighbor connectivity requires an increase in the number of gates of O(n), where n is the number of qubits (8). How much overhead is incurred in practice depends on the connections used in a particular circuit and how effi...
Abstract. We present quantum circuits to implement an exhaustive key search for the Advanced Encryption Standard (AES) and analyze the quantum resources required to carry out such an attack. We consider the overall circuit size, the number of qubits, and the circuit depth as measures for the cost of the presented quantum algorithms. Throughout, we focus on Clifford+T gates as the underlying fault-tolerant logical quantum gate set. In particular, for all three variants of AES (key size 128, 192, and 256 bit) that are standardized in FIPS-PUB 197, we establish precise bounds for the number of qubits and the number of elementary logical quantum gates that are needed to implement Grover's quantum algorithm to extract the key from a small number of AES plaintext-ciphertext pairs.
In this paper we outline the extension of recently introduced the sub-system embedding subalgebras coupled cluster (SES-CC) formalism to the unitary CC formalism. In analogy to the standard single-reference SES-CC formalism, its unitary CC extension allows one to include the dynamical (outside the active space) correlation effects in an SES induced complete active space (CAS) effective Hamiltonian. In contrast to the standard single-reference SES-CC theory, the unitary CC approach results in a Hermitian form of the effective Hamiltonian. Additionally, for the double unitary CC formalism (DUCC) the corresponding CAS eigenvalue problem provides a rigorous separation of external cluster amplitudes that describe dynamical correlation effects -used to define the effective Hamiltonian -from those corresponding to the internal (inside the active space) excitations that define the components of eigenvectors associated with the energy of the entire system. The proposed formalism can be viewed as an efficient way of downfolding many-electron Hamiltonian to the low-energy model represented by a particular choice of CAS. In principle, this technique can be extended to any type of complete active space representing an arbitrary energy window of a quantum system. The Hermitian character of low-dimensional effective Hamiltonians makes them an ideal target for several types of full configuration interaction (FCI) type eigensolvers. As an example, we also discuss the algebraic form of the perturbative expansions of the effective DUCC Hamiltonians corresponding to composite unitary CC theories and discuss possible algorithms for hybrid classical and quantum computing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.