We present an algorithm for computing depthoptimal decompositions of logical operations, leveraging a meetin-the-middle technique to provide a significant speedup over simple brute force algorithms. As an illustration of our method, we implemented this algorithm and found factorizations of commonly used quantum logical operations into elementary gates in the Clifford+T set. In particular, we report a decomposition of the Toffoli gate over the set of Clifford and T gates. Our decomposition achieves a total T -depth of 3, thereby providing a 40% reduction over the previously best known decomposition for the Toffoli gate. Due to the size of the search space, the algorithm is only practical for small parameters, such as the number of qubits, and the number of gates in an optimal implementation. Index Terms-Brute force search, meet-in-the-middle, quantum circuit optimization, quantum circuit synthesis.
Most work in quantum circuit optimization has been performed in isolation from the results of quantum fault-tolerance. Here we present a polynomial-time algorithm for optimizing quantum circuits that takes the actual implementation of fault-tolerant logical gates into consideration. Our algorithm re-synthesizes quantum circuits composed of Clifford group and T gates, the latter being typically the most costly gate in fault-tolerant models, e.g., those based on the Steane or surface codes, with the purpose of minimizing both T -count and T -depth. A major feature of the algorithm is the ability to re-synthesize circuits with additional ancillae to reduce T -depth at effectively no cost. The tested benchmarks show up to 65.7% reduction in T -count and up to 87.6% reduction in T -depth without ancillae, or 99.7% reduction in T -depth using ancillae.
We introduce Strawberry Fields, an open-source quantum programming architecture for light-based quantum computers, and detail its key features. Built in Python, Strawberry Fields is a full-stack library for design, simulation, optimization, and quantum machine learning of continuous-variable circuits. The platform consists of three main components: (i) an API for quantum programming based on an easy-to-use language named Blackbird; (ii) a suite of three virtual quantum computer backends, built in NumPy and TensorFlow, each targeting specialized uses; and (iii) an engine which can compile Blackbird programs on various backends, including the three built-in simulators, and -in the near future -photonic quantum information processors. The library also contains examples of several paradigmatic algorithms, including teleportation, (Gaussian) boson sampling, instantaneous quantum polynomial, Hamiltonian simulation, and variational quantum circuit optimization.
We introduce a framework for the formal specification and verification of quantum circuits based on the Feynman path integral. Our formalism, built around exponential sums of polynomial functions, provides a structured and natural way of specifying quantum operations, particularly for quantum implementations of classical functions. Verification of circuits over all levels of the Clifford hierarchy with respect to either a specification or reference circuit is enabled by a novel rewrite system for exponential sums with free variables. Our algorithm is further shown to give a polynomial-time decision procedure for checking the equivalence of Clifford group circuits. We evaluate our methods by performing automated verification of optimized Clifford+T circuits with up to 100 qubits and thousands of T gates, as well as the functional verification of quantum algorithms using hundreds of qubits. Our experiments culminate in the automated verification of the Hidden Shift algorithm for a class of Boolean functions in a fraction of the time it has taken recent algorithms to simulate.
We study the problem of CNOT-optimal quantum circuit synthesis over gate sets consisting of CNOT and Z-basis rotations of arbitrary angles. We show that the circuit-polynomial correspondence relates such circuits to Fourier expansions of pseudo-Boolean functions, and that for certain classes of functions this expansion uniquely determines the minimum CNOT cost of an implementation. As a corollary we prove that CNOT minimization over CNOT and phase gates is at least as hard as synthesizing a CNOT-optimal circuit computing a set of parities of its inputs. We then show that this problem is NP-complete for two restricted cases where all CNOT gates are required to have the same target, and where the circuit inputs are encoded in a larger state space. The latter case has applications to CNOT optimization over more general Clifford+T circuits. We further present an efficient heuristic algorithm for synthesizing circuits over CNOT and Z-basis rotations with small CNOT cost. Our experiments show a 23% reduction of CNOT gates on average across a suite of Clifford+T benchmark circuits, with a maximum reduction of 43%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.