Adaptive shaping of the phase and amplitude of femtosecond laser pulses has been developed into an efficient tool for the directed manipulation of interference phenomena, thus providing coherent control over various quantum-mechanical systems. Temporal resolution in the femtosecond or even attosecond range has been demonstrated, but spatial resolution is limited by diffraction to approximately half the wavelength of the light field (that is, several hundred nanometres). Theory has indicated that the spatial limitation to coherent control can be overcome with the illumination of nanostructures: the spatial near-field distribution was shown to depend on the linear chirp of an irradiating laser pulse. An extension of this idea to adaptive control, combining multiparameter pulse shaping with a learning algorithm, demonstrated the generation of user-specified optical near-field distributions in an optimal and flexible fashion. Shaping of the polarization of the laser pulse provides a particularly efficient and versatile nano-optical manipulation method. Here we demonstrate the feasibility of this concept experimentally, by tailoring the optical near field in the vicinity of silver nanostructures through adaptive polarization shaping of femtosecond laser pulses and then probing the lateral field distribution by two-photon photoemission electron microscopy. In this combination of adaptive control and nano-optics, we achieve subwavelength dynamic localization of electromagnetic intensity on the nanometre scale and thus overcome the spatial restrictions of conventional optics. This experimental realization of theoretical suggestions opens a number of perspectives in coherent control, nano-optics, nonlinear spectroscopy, and other research fields in which optical investigations are carried out with spatial or temporal resolution.
The most general investigation and exploitation of light-induced processes require simultaneous control over spatial and temporal properties of the electromagnetic field on a femtosecond time and nanometer length scale. Based on the combination of polarization pulse shaping and time-resolved two-photon photoemission electron microscopy, we demonstrate such control over nanoscale spatial and ultrafast temporal degrees of freedom of an electromagnetic excitation in the vicinity of a nanostructure. The time-resolved cross-correlation measurement of the local photoemission yield reveals the switching of the nanolocalized optical near-field distribution with a lateral resolution well below the diffraction limit and a temporal resolution on the femtosecond time scale. In addition, successful adaptive spatiotemporal control demonstrates the flexibility of the method. This flexible simultaneous control of temporal and spatial properties of nanophotonic excitations opens new possibilities to tailor and optimize the lightmatter interaction in spectroscopic methods as well as in nanophotonic applications.coherent control | nanophotonics | plasmonics | ultrafast spectroscopy T he interaction of light with matter is of fundamental importance in many areas of nature, science, and engineering, and the dynamics and efficiency of light-induced processes are determined by the properties of the optical field as a function of space and time at the location of interaction. Hence their most general investigation and exploitation would require the generation of light fields that can be specified at will in both their spatial and temporal degrees of freedom at all length and time scales. In the past, significant progress has been made toward realizing either of these two manipulation objectives separately. For temporal field properties, femtosecond laser pulse shaping (1) offers flexible control over the field amplitude, phase, and polarization (2, 3) on an ultrashort time scale. This has been exploited for coherent control over numerous quantum-mechanical systems (4, 5). For the case of spatial light-field properties, on the other hand, emerging nanooptical techniques (6) have made available spectroscopy beyond the Abbe diffraction limit, as, for example, nanoantenna-assisted addressing of individual molecules (7). Combination with femtosecond excitation offers high resolution in space and time (8-15) and opens routes toward novel applications (16,17). In particular, deliberate spatial manipulation of optical near-field distributions was realized with adaptive and coherent control methods (9,(11)(12)(13)(18)(19)(20)(21)(22). In our recent demonstration of adaptive control of nanooptical fields (13), only spatial properties of optical near-field distributions were accessed. In the present work, in contrast, we directly measure and control also the temporal evolution of the nanoscale excitation. This information is obtained and exploited here using time-resolved cross-correlation measurements with one polarization-shaped "pump" light pu...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.