A series of azetidinone cholesterol absorption inhibitors related to SCH 48461 ((-)-6) has been prepared, and compounds were evaluated for their ability to inhibit hepatic cholesteryl ester formation in a cholesterol-fed hamster model. Although originally designed as acyl CoA: cholesterol acyltransferase (ACAT) inhibitors, comparison of in vivo potency with in vitro activity in a microsomal ACAT assay indicates no correlation between activity in these two models. The molecular mechanism by which these compounds inhibit cholesterol absorption is unknown. Despite this limitation, examination of the in vivo activity of a range of compounds has revealed clear structure-activity relationships consistent with a well-defined molecular target. The details of these structure-activity relationships and their implications on the nature of the putative pharmacophore are discussed.
A novel class of antiulcer agents, the substituted imidazo[1,2-a]pyridines, is described. The present compounds are not histamine (H2) receptor antagonists nor are they prostaglandin analogues, yet they exhibit both gastric antisecretory and cytoprotective properties. The mechanism of gastric antisecretory activity may involve inhibition of the H+/K+-ATPase enzyme. Structure-activity studies led to the identification of 3-(cyanomethyl)-2-methyl-8-(phenylmethoxy)imidazo[1,2-a]pyridine, SCH 28080 (27), which was selected for further development and clinical evaluation.
In our efforts to develop second generation DPP-4 inhibitors, we endeavored to identify distinct structures with long-acting (once weekly) potential. Taking advantage of X-ray cocrystal structures of sitagliptin and other DPP-4 inhibitors, such as alogliptin and linagliptin bound to DPP-4, and aided by molecular modeling, we designed several series of heterocyclic compounds as initial targets. During their synthesis, an unexpected chemical transformation provided a novel tricyclic scaffold that was beyond our original design. Capitalizing on this serendipitous discovery, we have elaborated this scaffold into a very potent and selective DPP-4 inhibitor lead series, as highlighted by compound 17c.
Conformational restriction of previously disclosed acyclic (diphenylethyl)diphenylacetamides led to the discovery of several potent inhibitors of acyl CoA:cholesterol acyltransferase (ACAT). cis-[2-(4-Hydroxyphenyl)-1-indanyl]diphenylacetamide (4a) was the most potent ACAT inhibitor identified (IC50 = 0.04 microM in an in vitro rat hepatic microsomal ACAT assay, ED50 = 0.72 mg/kg/day in cholesterol-fed hamster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.