The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) is an intercomparison of multiple types of numerical models configured in radiative‐convective equilibrium (RCE). RCE is an idealization of the tropical atmosphere that has long been used to study basic questions in climate science. Here, we employ RCE to investigate the role that clouds and convective activity play in determining cloud feedbacks, climate sensitivity, the state of convective aggregation, and the equilibrium climate. RCEMIP is unique among intercomparisons in its inclusion of a wide range of model types, including atmospheric general circulation models (GCMs), single column models (SCMs), cloud‐resolving models (CRMs), large eddy simulations (LES), and global cloud‐resolving models (GCRMs). The first results are presented from the RCEMIP ensemble of more than 30 models. While there are large differences across the RCEMIP ensemble in the representation of mean profiles of temperature, humidity, and cloudiness, in a majority of models anvil clouds rise, warm, and decrease in area coverage in response to an increase in sea surface temperature (SST). Nearly all models exhibit self‐aggregation in large domains and agree that self‐aggregation acts to dry and warm the troposphere, reduce high cloudiness, and increase cooling to space. The degree of self‐aggregation exhibits no clear tendency with warming. There is a wide range of climate sensitivities, but models with parameterized convection tend to have lower climate sensitivities than models with explicit convection. In models with parameterized convection, aggregated simulations have lower climate sensitivities than unaggregated simulations.
[1] Convective available potential energy (CAPE) is shown to increase rapidly with warming in simulations of radiativeconvective equilibrium over a wide range of surface temperatures. The increase in CAPE implies a systematic deviation of the thermal stratification from moist adiabatic that is non-negligible at high temperatures. However, cloud buoyancy remains much smaller than what CAPE would imply because entrainment is more effective in reducing buoyancy in warmer atmospheres. An entraining plume model in the limit of zero cloud buoyancy is shown to reproduce the increase in CAPE with warming if the entrainment rate is held fixed and increases in the vertical extent of convection are taken into account. These model results together with radiosonde observations are used to support a conceptual model in which entrainment plays a role in determining the thermal stratification of the tropical atmosphere. Citation: Singh, M. S., and P. A. O'Gorman (2013), Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium, Geophys. Res. Lett., 40,[4398][4399][4400][4401][4402][4403]
Simulations of radiative-convective equilibrium with a cloud-system resolving model are used to investigate the scaling of high percentiles of the precipitation distribution (precipitation extremes) over a wide range of surface temperatures. At surface temperatures above roughly 295 K, precipitation extremes increase with warming in proportion to the increase in surface moisture, following what is termed Clausius-Clapeyron (CC) scaling. At lower temperatures, the rate of increase of precipitation extremes depends on the choice of cloud and precipitation microphysics scheme and the accumulation period, and it differs markedly from CC scaling in some cases. Precipitation extremes are found to be sensitive to the fall speeds of hydrometeors, and this partly explains the different scaling results obtained with different microphysics schemes. The results suggest that microphysics play an important role in determining the response of convective precipitation extremes to warming, particularly when ice-and mixed-phase processes are important.
Cyclones are a key element of extratropical weather and frequently lead to extreme events like wind storms and heavy precipitation. Understanding potential changes of cyclone frequency and intensity is thus essential for a proper assessment of climate change impacts. Here the behavior of extratropical cyclones under strongly varying climate conditions is investigated using idealized climate model simulations in an aquaplanet setup. A cyclone tracking algorithm is applied to assess various statistics of cyclone properties such as intensity, size, lifetime, displacement velocity, and deepening rates. In addition, a composite analysis of intense cyclones is performed. In general, the structure of extratropical cyclones in the idealized simulations is very robust, and changes in major cyclone characteristics are relatively small. Median cyclone intensity, measured in terms of minimum sea level pressure and lower-tropospheric relative vorticity, has a maximum in simulations with global mean temperature slightly warmer than present-day Earth, broadly consistent with the behavior of the eddy kinetic energy analyzed in previous studies. Maximum deepening rates along cyclone tracks behave similarly and are in agreement with linear quasigeostrophic growth rates if the effect of latent heat release on the stratification is taken into account. In contrast to moderate cyclones, the relative vorticity of intense cyclones continues to increase with warming to substantially higher temperatures, and this is associated with enhanced lower-tropospheric potential vorticity anomalies likely caused by increased diabatic heating. Moist processes may, therefore, lead to the further strengthening of intense cyclones in warmer climates even if cyclones weaken on average.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.