Target motion due to breathing is one of the major obstacles in dose escalation of radiation therapy to some tumors in the thoracoabdominal region. The development of beam gating or target motion tracking techniques provides a possibility to reduce normal tissue volume in a treatment field. Tumor motion monitoring in those techniques plays a crucial role, but has not yet been adequately explored. This paper reports our preliminary investigation on breath introduced tumor motion. Tumor locations and motion properties were determined from digitized fluoroscopic videos acquired during patient simulation. Image distortion due to irregularities in the imaging chain, such as the pincushion distortion, was corrected with a polynomial unwarping method. Temporal Fourier transformation of the fluoroscopic video was introduced to convert the motion information over time to a static view of a motion field, in which regions with different motion ranges can be directly measured. Patient breathing patterns vary from patient to patient and so does the kinematic behavior of individual tumors. In order to evaluate the feasibility for tracking internal target motion with nonionizing-radiation techniques, motion patterns between internal targets and external radio opaque markers placed on patient's chest during fluoroscopic video acquisition were compared. For some patients, significant motion phase discrepancies between an internal target and an external marker have been observed. Quantitative measurements are reported. These results will be useful in the design of a motion tracking or gated radiotherapy system.
The 1983 AAPM protocol for the determination of absorbed dose from high-energy photon and electron beams recommends using Pion (the reciprocal of collection efficiency), as determined by the two-voltage technique, to correct for recombination losses in ionization chambers. Methods and data for the determination of ionization chamber collection efficiencies are scattered throughout the literature. The present work consolidates the available information, rectifies certain omissions, and provides several convenient and readily implemented methods for determining Pion. Computer programs, quadratic approximations, and data tables are presented to facilitate the determination of Pion for continuous, pulsed, and pulsed-swept beams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.