Background Deep learning offers considerable promise for medical diagnostics. We aimed to evaluate the diagnostic accuracy of deep learning algorithms versus health-care professionals in classifying diseases using medical imaging.Methods In this systematic review and meta-analysis, we searched Ovid-MEDLINE, Embase, Science Citation Index, and Conference Proceedings Citation Index for studies published from Jan 1, 2012, to June 6, 2019. Studies comparing the diagnostic performance of deep learning models and health-care professionals based on medical imaging, for any disease, were included. We excluded studies that used medical waveform data graphics material or investigated the accuracy of image segmentation rather than disease classification. We extracted binary diagnostic accuracy data and constructed contingency tables to derive the outcomes of interest: sensitivity and specificity. Studies undertaking an out-of-sample external validation were included in a meta-analysis, using a unified hierarchical model. This study is registered with PROSPERO, CRD42018091176.Findings Our search identified 31 587 studies, of which 82 (describing 147 patient cohorts) were included. 69 studies provided enough data to construct contingency tables, enabling calculation of test accuracy, with sensitivity ranging from 9•7% to 100•0% (mean 79•1%, SD 0•2) and specificity ranging from 38•9% to 100•0% (mean 88•3%, SD 0•1). An out-of-sample external validation was done in 25 studies, of which 14 made the comparison between deep learning models and health-care professionals in the same sample. Comparison of the performance between health-care professionals in these 14 studies, when restricting the analysis to the contingency table for each study reporting the highest accuracy, found a pooled sensitivity of 87•0% (95% CI 83•0-90•2) for deep learning models and 86•4% (79•9-91•0) for health-care professionals, and a pooled specificity of 92•5% (95% CI 85•1-96•4) for deep learning models and 90•5% (80•6-95•7) for health-care professionals.Interpretation Our review found the diagnostic performance of deep learning models to be equivalent to that of health-care professionals. However, a major finding of the review is that few studies presented externally validated results or compared the performance of deep learning models and health-care professionals using the same sample. Additionally, poor reporting is prevalent in deep learning studies, which limits reliable interpretation of the reported diagnostic accuracy. New reporting standards that address specific challenges of deep learning could improve future studies, enabling greater confidence in the results of future evaluations of this promising technology.
Artificial intelligence has seen several breakthroughs in recent years, with games often serving as milestones. A common feature of these games is that players have perfect information. Poker, the quintessential game of imperfect information, is a long-standing challenge problem in artificial intelligence. We introduce DeepStack, an algorithm for imperfect-information settings. It combines recursive reasoning to handle information asymmetry, decomposition to focus computation on the relevant decision, and a form of intuition that is automatically learned from self-play using deep learning. In a study involving 44,000 hands of poker, DeepStack defeated, with statistical significance, professional poker players in heads-up no-limit Texas hold'em. The approach is theoretically sound and is shown to produce strategies that are more difficult to exploit than prior approaches.
Several large cloze-style context-questionanswer datasets have been introduced recently: the CNN and Daily Mail news data and the Children's Book Test. Thanks to the size of these datasets, the associated text comprehension task is well suited for deep-learning techniques that currently seem to outperform all alternative approaches. We present a new, simple model that uses attention to directly pick the answer from the context as opposed to computing the answer using a blended representation of words in the document as is usual in similar models. This makes the model particularly suitable for questionanswering problems where the answer is a single word from the document. Ensemble of our models sets new state of the art on all evaluated datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.