Several large cloze-style context-questionanswer datasets have been introduced recently: the CNN and Daily Mail news data and the Children's Book Test. Thanks to the size of these datasets, the associated text comprehension task is well suited for deep-learning techniques that currently seem to outperform all alternative approaches. We present a new, simple model that uses attention to directly pick the answer from the context as opposed to computing the answer using a blended representation of words in the document as is usual in similar models. This makes the model particularly suitable for questionanswering problems where the answer is a single word from the document. Ensemble of our models sets new state of the art on all evaluated datasets.
Many papers have been published on the knowledge base completion task in the past few years. Most of these introduce novel architectures for relation learning that are evaluated on standard datasets such as FB15k and WN18. This paper shows that the accuracy of almost all models published on the FB15k can be outperformed by an appropriately tuned baseline -our reimplementation of the DistMult model. Our findings cast doubt on the claim that the performance improvements of recent models are due to architectural changes as opposed to hyperparameter tuning or different training objectives. This should prompt future research to re-consider how the performance of models is evaluated and reported.
If autonomous AI systems are to be reliably safe in novel situations, they will need to incorporate general principles guiding them to recognize and avoid harmful behaviours. Such principles may need to be supported by a binding system of regulation, which would need the underlying principles to be widely accepted. They should also be specific enough for technical implementation. Drawing inspiration from law, this article explains how negative human rights could fulfil the role of such principles and serve as a foundation both for an international regulatory system and for building technical safety constraints for future AI systems.
This article appears in the AI & Society track.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.