Aims
Pulmonary transit time (PTT) is the time blood takes to pass from the right ventricle to the left ventricle via pulmonary circulation. We aimed to quantify PTT in routine cardiovascular magnetic resonance imaging perfusion sequences. PTT may help in the diagnostic assessment and characterization of patients with unclear dyspnoea or heart failure (HF).
Methods and results
We evaluated routine stress perfusion cardiovascular magnetic resonance scans in 352 patients, including an assessment of PTT. Eighty-six of these patients also had simultaneous quantification of N-terminal pro-brain natriuretic peptide (NTproBNP). NT-proBNP is an established blood biomarker for quantifying ventricular filling pressure in patients with presumed HF. Manually assessed PTT demonstrated low inter-rater variability with a correlation between raters >0.98. PTT was obtained automatically and correctly in 266 patients using artificial intelligence. The median PTT of 182 patients with both left and right ventricular ejection fraction >50% amounted to 6.8 s (Pulmonary transit time: 5.9–7.9 s). PTT was significantly higher in patients with reduced left ventricular ejection fraction (<40%; P < 0.001) and right ventricular ejection fraction (<40%; P < 0.0001). The area under the receiver operating characteristics curve (AUC) of PTT for exclusion of HF (NT-proBNP <125 ng/L) was 0.73 (P < 0.001) with a specificity of 77% and sensitivity of 70%. The AUC of PTT for the inclusion of HF (NT-proBNP >600 ng/L) was 0.70 (P < 0.001) with a specificity of 78% and sensitivity of 61%.
Conclusion
PTT as an easily, even automatically obtainable and robust non-invasive biomarker of haemodynamics might help in the evaluation of patients with dyspnoea and HF.
Pericardial effusions (PEFs) are often missed on Computed Tomography (CT), which particularly affects the outcome of patients presenting with hemodynamic compromise. An automatic PEF detection, segmentation, and classification tool would expedite and improve CT based PEF diagnosis; 258 CTs with (206 with simple PEF, 52 with hemopericardium) and without PEF (each 134 with contrast, 124 non-enhanced) were identified using the radiology report (01/2016–01/2021). PEF were manually 3D-segmented. A deep convolutional neural network (nnU-Net) was trained on 316 cases and separately tested on the remaining 200 and 22 external post-mortem CTs. Inter-reader variability was tested on 40 CTs. PEF classification utilized the median Hounsfield unit from each prediction. The sensitivity and specificity for PEF detection was 97% (95% CI 91.48–99.38%) and 100.00% (95% CI 96.38–100.00%) and 89.74% and 83.61% for diagnosing hemopericardium (AUC 0.944, 95% CI 0.904–0.984). Model performance (Dice coefficient: 0.75 ± 0.01) was non-inferior to inter-reader (0.69 ± 0.02) and was unaffected by contrast administration nor alternative chest pathology (p > 0.05). External dataset testing yielded similar results. Our model reliably detects, segments, and classifies PEF on CT in a complex dataset, potentially serving as an alert tool whilst enhancing report quality. The model and corresponding datasets are publicly available.
Pulmonary transit time (PTT) derived from routine cardiac magnetic resonance perfusion scans is a robust and easily obtainable noninvasive parameter of hemodynamics. PTT correlates with both LVEF, RVEF and NT-proBNP and could serve as a new global non-invasive parameter with a discriminative character for detecting cardiopulmonary dysfunction. We demonstrate that PTT has a high diagnostic accuracy in terms of exclusion and inclusion of heart failure as assessed by NT-proBNP, even in patients with preserved LVEF and RVEF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.