Biodegradable stents are promising treatments for many diseases, e.g., coronary artery disease, urethral diseases, tracheal diseases, and esophageal strictures. The mechanical properties of biodegradable stent materials play a key role in the safety and efficacy of treatment. In particular, insufficient creep resistance of the stent material could result in premature stent collapse or narrowing. Commercially available biodegradable self-expandable SX-ELLA stents made of polydioxanone monofilament were tested. A new, simple, and affordable method to measure the shear modulus of tiny viscoelastic wires is presented. The important mechanical parameters of the polydioxanone filament were obtained: the median Young's modulus wasẼ = 958 (922, 974) MPa and the shear modulus wasG = 357 (185, 387) MPa, resulting in a Poisson's ratio of ν = 0.34. The SX-ELLA stents exhibited significant force relaxation due to the stress relaxation of the polydioxanone monofilament, approximately 19% and 36% 10 min and 48 h after stent application, respectively. However, these results were expected, and the manufacturer and implanting clinician should be aware of the known behavior of these biodegradable materials. If possible, a biodegradable stent should be designed considering therapeutic force rather than initial force. Additionally, new and more advanced biodegradable shape-memory polymers should be considered for future study and use.
Springs should be mechanically stabilized before their application. The degree of force degradation over time is insignificant for mechanically stabilized springs. Degradation or regeneration of force over time, mechanical stabilization or micromovements in the mouth don't cause any transition between individual stress-strain curve phases.
In this in vitro study, we tested 10 types of springs from 5 manufacturers. We performed a simulation of the clinically relevant action of the spring during its application and treatment of the patient. For determining the deactivation plateau, we developed an innovative statistical method, making it feasible to precisely find and evaluate the necessary clinically relevant parameters of all types of NiTi SE closed-coil springs in the market. In terms of the application simplicity, the 3M 12 and 3M 9 springs proved to be the most suitable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.