BackgroundProviding supplemental amino acids to ICU patients during a 3-h period results in improved whole-body net protein balance, without an increase in amino acid oxidation. The primary objective was to investigate if a 24-h intravenous amino acid infusion in critically ill patients has a sustained effect on whole-body protein balance as was seen after 3 h. Secondary objectives were monitoring of amino acid oxidation rate, urea and free amino acid plasma concentrations.MethodsAn infusion of [1-13C]-phenylalanine was added to ongoing enteral nutrition to quantify the enteral uptake of amino acids. Primed intravenous infusions of [ring-2H5]-phenylalanine and [3,3-2H2]-tyrosine were used to assess whole-body protein synthesis and breakdown, to calculate net protein balance and to assess amino acid oxidation at baseline and at 3 and 24 hours. An intravenous amino acid infusion was added to nutrition at a rate of 1 g/kg/day and continued for 24 h.ResultsEight patients were studied. The amino acid infusion resulted in improved net protein balance over time, from -1.6 ± 7.9 μmol phe/kg/h at 0 h to 6.0 ± 8.8 at 3 h and 7.5 ± 5.1 at 24 h (p = 0.0016). The sum of free amino acids in plasma increased from 3.1 ± 0.6 mmol/L at 0 h to 3.2 ± 0.3 at 3 h and 3.6 ± 0.5 at 24 h (p = 0.038). Amino acid oxidation and plasma urea were not altered significantly.ConclusionWe demonstrated that the improvement in whole-body net protein balance from a supplemental intravenous amino acid infusion seen after 3 h was sustained after 24 h in critically ill patients.Trial registrationThis trial was prospectively registered at Australian New Zealand Clinical Trials Registry. ACTRN, 12615001314516. Registered on 1 December 2015.
BackgroundIndirect calorimetry allows the determination of energy expenditure in critically ill patients by measuring oxygen consumption (VO2) and carbon dioxide production (VCO2). Recent studies have demonstrated variable performance of “breath-by-breath” instruments compared to mixing chamber technology. The aim of this study was to validate two modern devices (E-sCOVX and Quark RMR) against a reference method (Deltatrac II).MethodMeasurements of VO2/VCO2 with the test and reference devices were performed simultaneously over a 20-min period in mechanically ventilated adult intensive care unit patients. Accuracy and precision of instruments were analyzed using Bland-Altman plots.ResultsForty-eight measurements in 22 patients were included for analysis. Both E-sCOVX and Quark RMR overestimated VO2 and VCO2 compared to Deltatrac II, corresponding to a 10 % higher mean resting energy expenditure. Limits of agreement of resting energy expenditure within ±2 standard deviations were ±461 kcal/24 h (±21 % expressed as percentage error) for ΔE-sCOVX–Deltatrac II and ±465 kcal/24 h (±22 %) for ΔQuark RMR–Deltatrac II.ConclusionBoth test devices overestimate VO2 and VCO2 compared to Deltatrac II. The observed limits of agreement are comparable to those commonly accepted in evaluations of circulatory monitoring, and significantly less than results from predictive equations. We hypothesize that the discrepancy between methods is due to patient/ventilator-related factors that affect the synchronization of gas and spirometry waveforms.Trial registrationAustralian New Zealand Clinical Trials Registry, Trial ID ACTRN12615000205538. Date registered 3 March 2015.
The high fashion in nutrition for the critically ill is to recommend a high protein intake. Several opinion leaders are surfing on this wave, expanding the suggested protein allowance upwards. At the same time, there is no new evidence supporting this change in recommendations. Observational data show that in clinical practice protein intake is most often far below current ESPEN recommendations of 1.2–1.5 g/kg/day. Therefore, it may be in the best interests of our patients just to adhere to that guideline, and not to stretch them upwards for protein intake? Here we give arguments to stay conservative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.