The role of the alkali metal cations in halide perovskite solar cells is not well understood. Using synchrotron-based nano–x-ray fluorescence and complementary measurements, we found that the halide distribution becomes homogenized upon addition of cesium iodide, either alone or with rubidium iodide, for substoichiometric, stoichiometric, and overstoichiometric preparations, where the lead halide is varied with respect to organic halide precursors. Halide homogenization coincides with long-lived charge carrier decays, spatially homogeneous carrier dynamics (as visualized by ultrafast microscopy), and improved photovoltaic device performance. We found that rubidium and potassium phase-segregate in highly concentrated clusters. Alkali metals are beneficial at low concentrations, where they homogenize the halide distribution, but at higher concentrations, they form recombination-active second-phase clusters.
Hybrid spin-mechanical systems provide a platform for integrating quantum registers and transducers. Efficient creation and control of such systems require a comprehensive understanding of the individual spin and mechanical components as well as their mutual interactions. Point defects in silicon carbide (SiC) offer long-lived, optically addressable spin registers in a wafer-scale material with low acoustic losses, making them natural candidates for integration with high quality factor mechanical resonators. Here, we show Gaussian focusing of a surface acoustic wave in SiC, characterized by a novel stroboscopic X-ray diffraction imaging technique, which delivers direct, strain amplitude information at nanoscale spatial resolution. Using ab initio calculations, we provide a more complete picture of spin-strain coupling for various defects in SiC with C 3v symmetry. This reveals the importance of shear for future device engineering and enhanced spin-mechanical coupling. We demonstrate all-optical detection of acoustic paramagnetic resonance without microwave magnetic fields, relevant to sensing applications. Finally, we show mechanically driven Autler-Townes splittings and magnetically forbidden Rabi oscillations. These results offer a basis for full strain control of three-level spin systems.
The charge-density-wave transition in TiSe (2), which results in a commensurate (2x2x2) superlattice at temperatures below approximately 200 K, presumably involves softening of a zone-boundary phonon mode. For the first time, this phonon-softening behavior has been examined over a wide temperature range by synchrotron x-ray thermal diffuse scattering.
This review discusses recent progress in the development of hard X-ray microscopy techniques for materials characterization at the nanoscale. Although the utility of traditionally ensemble-based X-ray techniques in materials research has been widely recognized, the utility of X-ray techniques as a tool for local characterization of nanoscale materials properties has undergone rapid development in recent years. Owing to a confluence of improvements in synchrotron source brightness, focusing optics fabrication, detection, and data analysis, nanoscale X-ray imaging techniques have moved beyond proof-of-principle experiments to play a central role in synchrotron user programs worldwide with high-impact applications made to materials science questions. Here, we review the current state of synchrotron-based, hard X-ray nanoscale microscopy techniques—including 3D tomographic visualization, spectroscopic elemental and chemical mapping, microdiffraction-based structural analysis, and coherent methods for nanomaterials imaging—with particular emphasis on applications to materials research.
High-performance piezoelectrics are lead-based solid solutions that exhibit a so-called morphotropic phase boundary, which separates two competing phases as a function of chemical composition; as a consequence, an intermediate low-symmetry phase with a strong piezoelectric effect arises. In search for environmentally sustainable lead-free alternatives that exhibit analogous characteristics, we use a network of competing domains to create similar conditions across thermal inter-ferroelectric transitions in simple, lead-free ferroelectrics such as BaTiO 3 and KNbO 3 . Here we report the experimental observation of thermotropic phase boundaries in these classic ferroelectrics, through direct imaging of low-symmetry intermediate phases that exhibit large enhancements in the existing nonlinear optical and piezoelectric property coefficients. Furthermore, the symmetry lowering in these phases allows for new property coefficients that exceed all the existing coefficients in both parent phases. Discovering the thermotropic nature of thermal phase transitions in simple ferroelectrics thus presents unique opportunities for the design of 'green' high-performance materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.