Todays commercial off-the-shelf computer systems are multicore computing systems as a combination of CPU, graphic processor (GPU) and custom devices. In comparison with CPU cores, graphic cards are capable to execute hundreds up to thousands compute units in parallel. To benefit from these GPU computing resources, applications have to be parallelized and adapted to the target architecture. In this paper we show our experience in applying the NQueens puzzle solution on GPUs using Nvidia's CUDA (Compute Unified Device Architecture) technology. Using the example of memory usage and memory access, we demonstrate that optimizations of CUDA programs may have contrary results on different CUDA architectures. Evaluation results will point out, that it is not sufficient to use new programming languages or compilers to achieve best results with emerging graphic card computing.
Context-dependent behavior is becoming increasingly important for a wide range of application domains, from pervasive computing to common business applications. Unfortunately, mainstream programming languages do not provide mechanisms that enable software entities to adapt their behavior dynamically to the current execution context. This leads developers to adopt convoluted designs to achieve the necessary runtime flexibility. We propose a new programming technique called Context-oriented Programming (COP) which addresses this problem. COP treats context explicitly, and provides mechanisms to dynamically adapt behavior in reaction to changes in context, even after system deployment at runtime. In this paper, we lay the foundations of COP, show how dynamic layer activation enables multi-dimensional dispatch, illustrate the application of COP by examples in several language extensions, and demonstrate that COP is largely independent of other commitments to programming style.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.