Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate-based meta-analysis (CBMA) of neuroimaging results that has been validated for a variety of uses. Stepwise modifications have improved ALE’s theoretical and statistical rigor since its introduction. Here, we evaluate two avenues to further optimize ALE. First, we demonstrate that the maximum contribution of an experiment makes to an ALE map is related to the number of foci it reports and their proximity. We present a modified ALE algorithm that eliminates these within-experiment effects. However, we show that these effects only account for 2–3% of cumulative ALE values, and removing them has little impact on thresholded ALE maps. Next, we present an alternate organizational approach to datasets that prevents subject groups with multiple experiments in a dataset from influencing ALE values more than others. This modification decreases cumulative ALE values by 7–9%, changes the relative magnitude of some clusters, and reduces cluster extents. Overall, differences between results of the standard approach and these new methods were small. This finding validates previous ALE reports against concerns that they were driven by within-experiment or within-group effects. We suggest that the modified ALE algorithm is theoretically advantageous compared with the current algorithm, and that the alternate organization of datasets is the most conservative approach for typical ALE analyses and other CBMA methods. Combining the two modifications minimizes both within-experiment and within-group effects, optimizing the degree to which ALE values represent concordance of findings across independent reports.
Recent experimental evidence suggests that the perception of temporal intervals is influenced by the temporal context in which they are presented. A longstanding example is the time-order-error, wherein the perception of two intervals relative to one another is influenced by the order in which they are presented. Here, we test whether the perception of temporal intervals in an absolute judgment task is influenced by the preceding temporal context. Human subjects participated in a temporal bisection task with no anchor durations (partition method). Intervals were demarcated by a Gaussian blob (visual condition) or burst of white noise (auditory condition) that persisted for one of seven logarithmically spaced sub-second intervals. Crucially, the order in which stimuli were presented was first-order counterbalanced, allowing us to measure the carryover effect of every successive combination of intervals. The results demonstrated a number of distinct findings. First, the perception of each interval was biased by the prior response, such that each interval was judged similarly to the preceding trial. Second, the perception of each interval was also influenced by the prior interval, such that perceived duration shifted away from the preceding interval. Additionally, the effect of decision bias was larger for visual intervals, whereas auditory intervals engendered greater perceptual carryover. We quantified these effects by designing a biologically-inspired computational model that measures noisy representations of time against an adaptive memory prior while simultaneously accounting for uncertainty, consistent with a Bayesian heuristic. We found that our model could account for all of the effects observed in human data. Additionally, our model could only accommodate both carryover effects when uncertainty and memory were calculated separately, suggesting separate neural representations for each. These findings demonstrate that time is susceptible to similar carryover effects as other basic stimulus attributes, and that the brain rapidly adapts to temporal context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.