Profiling of cyclic tetradepsipeptides beauverolides was tested as a chemotaxonomic tool for fungal strain identification/discrimination. Two new tetradepsipeptides, beauverolides Q and R, were characterized by tandem mass spectrometry. Specific elimination of 113 atomic mass units from both protonated and sodiated molecules of beauverolides is ubiquitous for all 12 most dominant congeners evaluated in this profiling study. Reconstruction of the total ion chromatogram, according to this neutral fragment release, was used for data filtering and selectivity enhancement. Selective ring opening and fragment ion formation of beauverolide I are discussed in detail utilizing high-level theoretical modeling of the fragmentation pathways.
Pseudallescheria boydii sensu lato is an emerging fungal pathogen causing fatal infections in both immunocompromised and immunocompetent hosts. In this work, two P. boydii isolates (human and animal origin) have been identified as being producers of cyclic peptides. Five putative nonribosomal peptides with a unique structure, which have been named pseudacyclins, were characterized by nuclear magnetic resonance spectroscopy and mass spectrometry. The most abundant representative of the pseudacyclins was quantified also on fungal spores. The presence of these peptides on inhaled fungal spores creates the possibility for exploitation of pseudacyclins as early indicators of fungal infections caused by Pseudallescheria species.
High-performance liquid chromatography and tandem mass spectrometry (HPLC/MS/MS) was used for the detection of cyclic hexadepsipeptides roseotoxins produced by Trichothecium roseum. Roseotoxins were found in both submerged standard cultivation on CzapekDox medium and in vivo cultivation extract obtained from an apple. Roseotoxin chromatographic profiles from these two experiments were compared. Product-ion collision-induced dissociation (CID) spectra obtained on an ion trap (electrospray ionisation, ESI) were used for the identification of natural roseotoxins A, B, C and of minor destruxins A and B. The dissociation behavior of roseotoxins is discussed in terms of a fragmentation scheme proposed for describing the dissociation pathways of cyclic peptides. This scheme involves opening of the cyclopeptide ring via formation of oxazolone derivatives and fragmentation of the resulting linear species, which have a free N-terminus and an oxazolone ring at the C-terminus. Some aspects of this fragmentation scheme are underlined by modeling the dissociation channels of roseotoxin A using quantum chemical calculations. The structures of roseotoxin A and destruxin B were verified by nuclear magnetic resonance (NMR) spectroscopy. Structures of three new minor natural roseotoxins [Val(4)]RosA, [MeLxx(4)]RosA and [MeLxx(4)]RosB were deduced by ion cyclotron resonance Fourier transform mass spectrometry (ICR-FT-MS) and ion trap tandem mass spectrometry by examining the pre-separated roseotoxin fraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.