Canonical neutrophil antimicrobial effector mechanisms, such as degranulation, production of reactive oxygen species, and release of neutrophil extracellular traps (NETs), can result in severe pathology. Activation of neutrophils through immune complexes (ICs) plays a central role in the pathogenesis of many autoimmune inflammatory diseases. In this study, we report that immobilized ICs (iICs), which are hallmarks of several autoimmune diseases, induce the release of NETs from primary human neutrophils. The iIC-induced NET formation was found to require production of reactive oxygen species by NADPH oxidase and myeloperoxidase and to be mediated by FcγRIIIb. Blocking of the β2 integrin macrophage-1 Ag but not lymphocyte function–associated Ag-1 abolished iIC-induced NET formation. This suggests that FcγRIIIb signals in association with macrophage-1 Ag. As intracellular signaling pathways involved in iIC-induced NET formation we identified the tyrosine kinase Src/Syk pathway, which downstream regulates the PI3K/Akt, p38 MAPK, and ERK1/2 pathways. To our knowledge, the present study shows for the first time that iICs induce NET formation. Thus, we conclude that NETs contribute to pathology in autoimmune inflammatory disorders associated with surface-bound ICs.
Neutrophil granulocytes are rapidly recruited from the bloodstream to the site of acute inflammation where they die in large numbers. Because release of toxic substances from dead neutrophils can propagate the inflammatory response leading to tissue destruction, clearance of dying inflammatory neutrophils has a critical function in the resolution of the inflammatory response. Apoptotic neutrophils are phagocytosed primarily by macrophages, provided these cells are present in adequate numbers. However, macrophages are rare at sites of acute inflammation, whereas the number of neutrophils can be extremely high. In the current study, in vitro experiments with human neutrophils were carried out to investigate whether neutrophils can ingest apoptotic neutrophils. We show that naïve granulocytes isolated from venous blood have a limited capacity to phagocytose apoptotic cells. However, exposure to activating stimuli such as LPS, GM-CSF and/or IFN-γ results in enhanced phagocytosis of apoptotic cells. The efficient uptake of apoptotic cells by neutrophils was found to depend on the presence of heat labile serum factors. Importantly, the contact to or uptake of apoptotic cells inhibited neutrophil functions such as respiratory burst and the release of the proinflammatory cytokines TNF-α and interferon-inducible protein-10. Contact to apoptotic cells, however, induced the secretion of IL-8 and growth-related oncogene-α, which was independent of NF-κB and p38 MAPK but involved C5a and the ERK1/2 pathway. The data suggest that activated neutrophils participate in the clearance of apoptotic cells. In addition, because apoptotic cells inhibit proinflammatory functions of neutrophils, uptake of apoptotic cells by neutrophils contributes to the resolution of inflammation.
Neutrophil extracellular traps (NETs) consist of decondensed nuclear chromatin that is associated with proteins and are released by neutrophils during an inflammatory response. Released NETs are able to capture pathogens, prevent their dissemination and potentially kill them via antimicrobial peptides and proteins that are associated with the decondensed chromatin. In addition to their antimicrobial functions, NETs have also been shown to exert immunomodulatory effects by activation and differentiation of macrophages, dendritic cells and T cells. However, the effect of NETs on neutrophil functions is poorly understood. Here we report the first comprehensive study regarding the effects of NETs on human primary neutrophils in vitro. NETs were isolated from cultures of PMA-exposed neutrophils. Exposure of neutrophils to isolated NETs resulted in the activation of several neutrophil functions in a concentration-dependent manner. NETs induced exocytosis of granules, the production of reactive oxygen species (ROS) by the NADPH oxidase NOX2, NOX2-dependent NET formation, increased the phagocytosis and killing of microbial pathogens. Furthermore, NETs induced the secretion of the proinflammatory chemokine IL-8 and the B-cell-activating cytokine BAFF. We could show that the NET-induced activation of neutrophils occurs by pathways that involve the phosphorylation of Akt, ERK1/2 and p38. Taken together our results provide further insights into the proinflammatory role of NETs by activating neutrophil effector function and further supports the view that NETs can amplify inflammatory events. On the one hand the amplified functions enhance the antimicrobial defense. On the other hand, NET-amplified neutrophil functions can be involved in the pathophysiology of NET-associated diseases. In addition, NETs can connect the innate and adaptive immune system by inducing the secretion of the B-cell-activating cytokine BAFF.
The inflammatory microenvironment is commonly characterized by extracellular acidosis (pH < 7.35). Sensitivity to pH, CO2 or bicarbonate concentrations allows neutrophils to react to changes in their environment and to detect inflamed areas in the tissue. One important antimicrobial effector mechanism is the production of neutrophil extracellular traps (NETs), which are released during a programmed reactive oxygen species (ROS)-dependent cell death, the so-called NETosis. Although several functions of neutrophils have been analyzed under acidic conditions, the effect of extracellular acidosis on NETosis remains mainly unexplored and the available experimental results are contradictory. We performed a comprehensive study with the aim to elucidate the effect of extracellular acidosis on ROS-dependent NETosis of primary human neutrophils and to identify the underlying mechanisms. The study was performed in parallel in a CO2–bicabonate-buffered culture medium, which mimics in vivo conditions, and under HEPES-buffered conditions to verify the effect of pH independent of CO2 or bicarbonate. We could clearly show that extracellular acidosis (pH 6.5, 6.0, and 5.5) and intracellular acidification inhibit the release of ROS-dependent NETs upon stimulation of neutrophils with phorbol myristate acetate and immobilized immune complexes. Moreover, our findings suggest that the diminished NET release is a consequence of reduced ROS production and diminished glycolysis of neutrophils under acidic conditions. It was suggested previously that neutrophils can sense the border of inflamed tissue by the pH gradient and that a drop in pH serves as an indicator for the progress of inflammation. Following this hypothesis, our data indicate that an acidic inflammatory environment results in inhibition of extracellular operating effector mechanisms of neutrophils such as release of ROS and NETs. This way the release of toxic components and tissue damage can be avoided. However, we observed that major antimicrobial effector mechanisms such as phagocytosis and the killing of pathogens by neutrophils remain functional under acidic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.