Abstract. Cloud electrification and related lightning activity in thunderstorms have their origin in the charge separation and resulting distribution of charged iced particles within the cloud. So far, the ice distribution within convective clouds has been investigated mainly by means of ground-based meteorological radars. In this paper we show how the products from Cloud Profiling Radar (CPR) on board CloudSat, a polar satellite of NASA's Earth System Science Pathfinder (ESSP), can be used to obtain information from space on the vertical distribution of ice particles and ice content and relate them to the lightning activity. The analysis has been carried out, focusing on 12 convective events over Italy that crossed CloudSat overpasses during significant lightning activity. The CPR products considered here are the vertical profiles of cloud ice water content (IWC) and the effective radius (ER) of ice particles, which are compared with the number of strokes as measured by a ground lightning network (LINET). Results show a strong correlation between the number of strokes and the vertical distribution of ice particles as depicted by the 94 GHz CPR products: in particular, cloud upper and middle levels, high IWC content and relatively high ER seem to be favourable contributory causes for CG (cloud to ground) stroke occurrence.
Abstract. Cloud electrification and related lightning activity in thunderstorms have their origin in the charge separation and resulting distribution of charged iced particles within the cloud. So far, the ice distribution within convective clouds has been investigated mainly by means of ground based meteorological radars. In this paper we show how the products from Cloud Profiling Radar (CPR) on board CloudSat, a polar satellite of NASA's Earth System Science Pathfinder (ESSP), can be used to obtain information from space on the vertical distribution of ice particles, ice content and relate them to the lightning activity. The analysis has been carried out focusing on five convective events occurred over Italy that have crossed by CloudSat overpasses during significant lightning activity. The CPR products considered here are the vertical profiles of cloud Ice Water Content (IWC) and ice particles Effective Radius (ER), to be compared with the number of strokes as measured by a ground lightning network (LINET). Results show a strong correlation between the numbers of strokes and the vertical distribution of ice particles as depicted by the 94 GHz CPR products: in particular, cloud top IWC peaks and relatively high profile-averaged RE seems to be favourable to produce strokes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.