We recently reported that activation of Trop-2 through its cleavage at R87-T88 by ADAM10 underlies Trop-2–driven progression of colon cancer. However, the mechanism of action and pathological impact of Trop-2 in metastatic diffusion remain unexplored. Through searches for molecular determinants of cancer metastasis, we identified TROP2 as unique in its up-regulation across independent colon cancer metastasis models. Overexpression of wild-type Trop-2 in KM12SM human colon cancer cells increased liver metastasis rates in vivo in immunosuppressed mice. Metastatic growth was further enhanced by a tail-less, activated ΔcytoTrop-2 mutant, indicating the Trop-2 tail as a pivotal inhibitory signaling element. In primary tumors and metastases, transcriptome analysis showed no down-regulation of CDH1 by transcription factors for epithelial-to-mesenchymal transition, thus suggesting that the pro-metastatic activity of Trop-2 is through alternative mechanisms. Trop-2 can tightly interact with ADAM10. Here, Trop-2 bound E-cadherin and stimulated ADAM10-mediated proteolytic cleavage of E-cadherin intracellular domain. This induced detachment of E-cadherin from β-actin, and loss of cell-cell adhesion, acquisition of invasive capability, and membrane-driven activation of β-catenin signaling, which were further enhanced by the ΔcytoTrop-2 mutant. This Trop-2/E-cadherin/β-catenin program led to anti-apoptotic signaling, increased cell migration, and enhanced cancer-cell survival. In patients with colon cancer, activation of this Trop-2–centered program led to significantly reduced relapse-free and overall survival, indicating a major impact on progression to metastatic disease. Recently, the anti-Trop-2 mAb Sacituzumab govitecan-hziy was shown to be active against metastatic breast cancer. Our findings define the key relevance of Trop-2 as a target in metastatic colon cancer.
Trop-2 is a transmembrane signal transducer that can induce cancer growth. Using antibody targeting and N-terminal Edman degradation, we show here that Trop-2 undergoes cleavage in the first thyroglobulin domain loop of its extracellular region, between residues R87 and T88. Molecular modeling indicated that this cleavage induces a profound rearrangement of the Trop-2 structure, which suggested a deep impact on its biological function. No Trop-2 cleavage was detected in normal human tissues, whereas most tumors showed Trop-2 cleavage, including skin, ovary, colon, and breast cancers. Coimmunoprecipitation and mass spectrometry analysis revealed that ADAM10 physically interacts with Trop-2. Immunofluorescence/confocal time-lapse microscopy revealed that the two molecules broadly colocalize at the cell membrane. We show that ADAM10 inhibitors, siRNAs and shRNAs abolish the processing of Trop-2, which indicates that ADAM10 is an effector protease. Proteolysis of Trop-2 at R87-T88 triggered cancer cell growth both in vitro and in vivo. A corresponding role was shown for metastatic spreading of colon cancer, as the R87A-T88A Trop-2 mutant abolished xenotransplant metastatic dissemination. Activatory proteolysis of Trop-2 was recapitulated in primary human breast cancers. Together with the prognostic impact of Trop-2 and ADAM10 on cancers of the skin, ovary, colon, lung, and pancreas, these data indicate a driving role of this activatory cleavage of Trop-2 on malignant progression of tumors.
Trop-2 is a transmembrane signal transducer that is overexpressed in most human cancers, and drives malignant progression. To gain knowledge on the higher-order molecular mechanisms that drive Trop-2 signaling, we applied next-generation sequencing, proteomics, and high-resolution microscopy to models and primary cases of human colorectal cancer (CRC). We had previously shown that Trop-2 induces a Ca 2+ signal. We reveal here that Trop-2 binds the cell membrane Na + /K + -ATPase, and that clustering of Trop-2 induces an intracellular Ca 2+ rise followed by membrane translocation of PKCα, which in turn phosphorylates the Trop-2 cytoplasmic tail. This feed-forward signaling is promoted by the binding of Trop-2 to the PKCα membrane-anchor CD9. CRISPRbased inactivation of CD9 in CRC cells shows that CD9 is required by Trop-2 for recruiting PKCα and cofilin-1 to the cell membrane. This induces malignant progression through proteolytic cleavage of E-cadherin, remodeling of the β-actin cytoskeleton, and activation of Akt and ERK. The interaction between Trop-2 and CD9 was validated in vivo in murine models of CRC growth and invasion. Overexpression of the components of this Trop-2-driven super-complex significantly worsened disease-free and overall survival of CRC patients, supporting a pivotal relevance in CRC malignant progression. Our findings demonstrate a previously unsuspected layer of cancer growth regulation, which is dormant in normal tissues, and is activated by Trop-2 in cancer cells.
Next-generation Trop-2-targeted therapy against advanced cancers is hampered by expression of Trop-2 in normal tissues. We discovered that Trop-2 undergoes proteolytic activation by ADAM10 in cancer cells, leading to the exposure of a previously inaccessible protein groove flanked by two N-glycosylation sites. We designed a recognition strategy for this region, to drive selective cancer vulnerability in patients. Most undiscriminating anti-Trop-2 monoclonal antibodies (mAb) recognize a single immunodominant epitope. Hence, we removed it by deletion-mutagenesis. Cancer-specific, glycosylation-prone mAb were selected by ELISA, bio-layer interferometry, flow cytometry, confocal microscopy for differential binding to cleaved/activated, wild-type and glycosylation-site-mutagenized Trop-2. The resulting 2G10 mAb family binds Trop-2-expressing cancer cells, but not Trop-2 on normal cells. We humanized 2G10 by state-of-the-art CDR grafting/re-modeling, yielding Hu2G10. This antibody binds cancer-specific, cleaved/activated Trop-2 with Kd <10-12 M, and uncleaved/wtTrop-2 in normal cells with Kd 3.16x10-8 M, thus promising an unprecedented therapeutic index in patients. In vivo, Hu2G10 ablates growth of Trop-2-expressing breast, colon, prostate cancers, but shows no evidence of systemic toxicity, paving the way for a paradigm shift in Trop-2-targeted therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.