BackgroundInfections with HIV still represent a major human health problem worldwide and a vaccine is the only long-term option to fight efficiently against this virus. Standardized assessments of HIV-specific immune responses in vaccine trials are essential for prioritizing vaccine candidates in preclinical and clinical stages of development. With respect to neutralizing antibodies, assays with HIV-1 Env-pseudotyped viruses are a high priority. To cover the increasing demands of HIV pseudoviruses, a complete cell culture and transfection automation system has been developed.Methodology/Principal FindingsThe automation system for HIV pseudovirus production comprises a modified Tecan-based Cellerity system. It covers an area of 5×3 meters and includes a robot platform, a cell counting machine, a CO2 incubator for cell cultivation and a media refrigerator. The processes for cell handling, transfection and pseudovirus production have been implemented according to manual standard operating procedures and are controlled and scheduled autonomously by the system. The system is housed in a biosafety level II cabinet that guarantees protection of personnel, environment and the product. HIV pseudovirus stocks in a scale from 140 ml to 1000 ml have been produced on the automated system. Parallel manual production of HIV pseudoviruses and comparisons (bridging assays) confirmed that the automated produced pseudoviruses were of equivalent quality as those produced manually. In addition, the automated method was fully validated according to Good Clinical Laboratory Practice (GCLP) guidelines, including the validation parameters accuracy, precision, robustness and specificity.ConclusionsAn automated HIV pseudovirus production system has been successfully established. It allows the high quality production of HIV pseudoviruses under GCLP conditions. In its present form, the installed module enables the production of 1000 ml of virus-containing cell culture supernatant per week. Thus, this novel automation facilitates standardized large-scale productions of HIV pseudoviruses for ongoing and upcoming HIV vaccine trials.
The standardized assessments of HIV-specific immune responses are of main interest in the preclinical and clinical stage of HIV-1 vaccine development. In this regard, HIV-1 Env-pseudotyped viruses play a central role for the evaluation of neutralizing antibody profiles and are produced according to Good Clinical Laboratory Practice- (GCLP-) compliant manual and automated procedures. To further improve and complete the automated production cycle an automated system for aliquoting HIV-1 pseudovirus stocks has been implemented. The automation platform consists of a modified Tecan-based system including a robot platform for handling racks containing 48 cryovials, a Decapper, a tubing pump and a safety device consisting of ultrasound sensors for online liquid level detection of each individual cryovial. With the aim to aliquot the HIV-1 pseudoviruses in an automated manner under GCLP-compliant conditions a validation plan was developed where the acceptance criteria—accuracy, precision as well as the specificity and robustness—were defined and summarized. By passing the validation experiments described in this article the automated system for aliquoting has been successfully validated. This allows the standardized and operator independent distribution of small-scale and bulk amounts of HIV-1 pseudovirus stocks with a precise and reproducible outcome to support upcoming clinical vaccine trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.