To quantify age-related variability of insulin needs during day and night closed-loop insulin delivery. RESEARCH DESIGN AND METHODS We retrospectively analyzed data from hybrid closed-loop studies involving young children (1-6 years old, n 5 20), children (7-12 years, n 5 21), adolescents (13-17 years, n 5 15), and adults (>18 years, n 5 58) with type 1 diabetes. The coefficient of variation quantified variability of insulin needs during 3 weeks of unrestrictedliving hybrid closed-loop use. RESULTS Data from 2,365 nights and 2,367 days in 114 participants were analyzed. The coefficient of variation of insulin delivery was higher in young children compared with adults (mean difference at nighttime 10.7 percentage points [95% CI 2.9-18.4], P 5 0.003; daytime 6.4 percentage points [95% CI 2.0-10.9], P 5 0.002) and compared with adolescents (mean difference at nighttime 10.2 percentage points [95% CI 0.0-20.4], P 5 0.049; daytime 7.0 percentage points [95% CI 1.1-12.8], P 5 0.014). CONCLUSIONS Diabetes management in young children is complicated by higher variability in insulin requirements, supporting fast-track clinical practice adoption of closed-loop in this vulnerable population. With increasing application of insulin pump therapy and continuous glucose monitors, hybrid closed-loop has become a feasible treatment modality for people with type 1 diabetes (1,2). Apart from manual mealtime boluses, insulin delivery is autonomously modulated by a control algorithm based on real-time sensor glucose values. Insulin delivery may vary considerably from day to day and night to night due to varying activity levels, insulin set-changes, meal timings and composition, and other factors (3,4). To date, the association between age and insulin variability has not been assessed. In the present analysis, we investigate whether insulin requirements may be more variable in younger age.
Background A further increase in renewable energy supply is needed to substitute fossil fuels and combat climate change. Each energy source and respective technologies have specific techno-economic and environmental characteristics as well as social implications. This paper presents a comprehensive approach for prospective sustainability assessment of energy technologies developed within the Helmholtz Initiative “Energy System 2050” (ES2050). Methods The “ES2050 approach” comprises environmental, economic, and social assessment. It includes established life cycle based economic and environmental indicators, and social indicators derived from a normative concept of sustainable development. The elaborated social indicators, i.e. patent growth rate, acceptance, and domestic value added, address three different socio-technical areas, i.e. innovation (patents), public perception (acceptance), and public welfare (value added). Results The implementation of the “ES2050 approach” is presented exemplarily and different sustainability indicators and respective results are discussed based on three emerging technologies and corresponding case studies: (1) synthetic biofuels for mobility; (2) hydrogen from wind power for mobility; and (3) batteries for stationary energy storage. For synthetic biofuel, the environmental advantages over fossil gasoline are most apparent for the impact categories Climate Change and Ionizing Radiation—human health. Domestic value added accounts for 66% for synthetic biofuel compared to 13% for fossil gasoline. All hydrogen supply options can be considered to become near to economic competitiveness with fossil fuels in the long term. Survey participants regard Explosion Hazard as the most pressing concern about hydrogen fuel stations. For Li-ion batteries, the results for patent growth rate indicate that they enter their maturity phase. Conclusions The “ES2050 approach” enables a consistent prospective sustainability assessment of (emerging) energy technologies, supporting technology developers, decision-makers in politics, industry, and society with knowledge for further evaluation, steering, and governance. The approach presented is considered rather a starting point than a blueprint for the comprehensive assessment of renewable energy technologies though, especially for the suggested social indicators, their significance and their embedding in context scenarios for prospective assessments.
In order to analyse long-term transformation pathways, energy system models generally focus on economical and technical characteristics. However, these models usually do not consider sustainability aspects such as environmental impacts. In contrast, life cycle assessment enables an extensive estimate of those impacts. Due to these complementary characteristics, the combination of energy system models and life cycle assessment thus allows comprehensive environmental sustainability assessments of technically and economically feasible energy system transformation pathways. We introduce FRITS, a FRamework for the assessment of environmental Impacts of Transformation Scenarios. FRITS links bottom-up energy system models with life cycle impact assessment indicators and quantifies the environmental impacts of transformation strategies of the entire energy system (power, heat, transport) over the transition period. We apply the framework to conduct an environmental assessment of multi-sectoral energy scenarios for Germany. Here, a ‘Target’ scenario reaching 80% reduction of energy-related direct CO2 emissions is compared with a ‘Reference’ scenario describing a less ambitious transformation pathway. The results show that compared to 2015 and the ‘Reference’ scenario, the ‘Target’ scenario performs better for most life cycle impact assessment indicators. However, the impacts of resource consumption and land use increase for the ‘Target’ scenario. These impacts are mainly caused by road passenger transport and biomass conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.