Aspergillus flavus is the main producer of carcinogenic aflatoxins in agricultural commodities such as maize. This fungus occurs naturally on crops, and produces aflatoxins when environmental conditions are favorable. The aim of this study is to analyse the genetic variability among 109 A. flavus isolates previously recovered from maize sampled from a known aflatoxin-hotspot (Eastern region, Kenya) and the major maize-growing area in the Rift Valley (Kenya), and to determine their toxigenic potential. DNA analyses of internal transcribed spacer (ITS) regions of ribosomal DNA, partial β-tubulin gene (benA) and calmodulin gene (CaM) sequences were used. The strains were further analyzed for the presence of four aflatoxin-biosynthesis genes in relation to their capability to produce aflatoxins and other metabolites, targeting the regulatory gene aflR and the structural genes aflP, aflD, and aflQ. In addition, the metabolic profile of the fungal strains was unraveled using state-of-the-art LC-MS/MS instrumentation. The three gene-sequence data grouped the isolates into two major clades, A. minisclerotigenes and A. flavus. A. minisclerotigenes was most prevalent in Eastern Kenya, while A. flavus was common in both regions. A. parasiticus was represented by a single isolate collected from Rift Valley. Diversity existed within the A. flavus population, which formed several subclades. An inconsistency in identification of some isolates using the three markers was observed. The calmodulin gene sequences showed wider variation of polymorphisms. The aflatoxin production pattern was not consistent with the presence of aflatoxigenic genes, suggesting an inability of the primers to always detect the genes or presence of genetic mutations. Significant variation was observed in toxin profiles of the isolates. This is the first time that a profound metabolic profiling of A. flavus isolates was done in Kenya. Positive associations were evident for some metabolites, while for others no associations were found and for a few metabolite-pairs negative associations were seen. Additionally, the growth medium influenced the mycotoxin metabolite production. These results confirm the wide variation that exists among the group A. flavus and the need for more insight in clustering the group.
Unraveling the genetic diversity of livestock species is central to understanding their value and importance for conservation and improvement in diverse production environments. In developing countries, information on genetic attributes of many livestock species is unfortunately scanty to support well-informed decision-making upon relevant management strategies. This study aimed at investigating allelic variability, genetic diversity, and genetic relationships of 10 indigenous chicken ecotypes from Southern Highlands of Tanzania using the Major Histocompatibility Complex-linked LEI0258 marker. A total of 400 DNA samples, 40 per ecotype, were genotyped by capillary electrophoresis. Thirty different alleles with sizes ranging from 197 to 569 bp were determined. The number of alleles ranged from 17 (Itunduma) to 21 (Mbeya), with an average of 19.20 alleles per ecotype. Allelic polymorphism was further evaluated through genotyping by Sanger sequencing. Thirty-three DNA samples with different fragment sizes were re-amplified and their alleles sequenced to depict polymorphism based on a combination of two repeat regions at 12 and 13 bp, respectively, and flanking regions with SNP and indels. The repeat region at 13 bp appeared 1 to 28 times, whereas the region at 12 bp appeared 3 to 19 times in all sequenced fragments. The numbers of indels and SNP determined were 7 and 9, respectively. From capillary electrophoresis, the Chunya and Msimbazi ecotypes exhibited the highest genetic diversity (0.937), whereas the lowest value (0.910) was observed from the Mbarali ecotype, with an average of 0.925. The Namtumbo and Wanging’ombe ecotypes showed high inbreeding coefficients (F IS > 0.05), whereas a high excess heterozygote value (F IS = –0.098) was observed from the Njombe ecotype. Two percent of the genetic diversity was due to differences among ecotypes, and the rest was due to differences among individuals within the ecotypes. Despite the overall low genetic differentiation, both fragment and sequencing analyses depicted a high allelic and genetic variability across 10 chicken ecotypes. These results therefore, underscore the importance of establishing appropriate conservation and management strategies to capitalize on observed variability and maintain genetic flexibility across diverse production environments.
Ethiopia is the center of origin and genetic diversity of arabica coffee. Forty-two commercial arabica coffee varieties were developed by Jimma Agricultural Research Center (JARC) of Ethiopian Institute of Agricultural Research (EIAR) and released for production under diverse agro-ecologies of the country. Information on the level of genetic diversity among these varieties is scarce. Out of the 42 varieties, the genetic diversity of 40 widely cultivated commercial varieties was assessed using 14 simple sequence repeat (SSR) markers. These markers revealed polymorphism among the varieties. High average number of polymorphic alleles (7.5) and polymorphic information content (PIC = 80%) per locus were detected among the varieties. The genetic similarity among varieties using the Jaccard's similarity coefficient ranged from 0.14 to 0.78, with a mean of 0.38. The range of genetic similarity coefficient values in 92% of the possible pair-wise combinations varied from 0.14 to 0.50, indicating the presence of distant genetic relatedness among the varieties. Unweighted pair group method using arithmetic mean (UPGMA) clustering showed six major clusters and three singletons. Coffee varieties, belonging to the same geographic origin, were distributed across clusters. This study represents the first evidence of the presence of a high level of genetic diversity in Ethiopian commercial arabica coffee varieties. Divergent varieties with complementing traits could be crossed to develop productive hybrid coffee varieties.
β-amylase is a thermostable enzyme that hydrolyses starch during cooking of sweetpotato ( Ipomoea batatas ) storage roots, thereby influencing eating quality. Its activity is known to vary amongst genotypes but the genetic diversity of the beta-amylase gene ( Amyβ ) is not well studied. Amyβ has a highly conserved region between exon V and VI, forming part of the enzyme's active site. To determine the gene diversity, a 2.3 kb fragment, including the conserved region of the Amyβ gene was sequenced from 25 sweetpotato genotypes. The effect of sequence variation on gene expression, enzyme activity, and firmness in cooked roots was determined. Six genotypes carrying several SNPs within exon V, linked with an AT or ATGATA insertion in intron V were unique and clustered together. The genotypes also shared an A336E substitution in the amino acid sequence, eight residues upstream of a substrate-binding Thr344. The genotypes carrying this allele exhibited low gene expression and low enzyme activity. Enzyme activity was negatively correlated with firmness (R = −0.42) in cooked roots. This is the first report of such an allele, associated with low enzyme activity. These results suggest that genetic variation within the AmyB locus can be utilized to develop markers for firmness in sweetpotato breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.