Unraveling the genetic diversity of livestock species is central to understanding their value and importance for conservation and improvement in diverse production environments. In developing countries, information on genetic attributes of many livestock species is unfortunately scanty to support well-informed decision-making upon relevant management strategies. This study aimed at investigating allelic variability, genetic diversity, and genetic relationships of 10 indigenous chicken ecotypes from Southern Highlands of Tanzania using the Major Histocompatibility Complex-linked LEI0258 marker. A total of 400 DNA samples, 40 per ecotype, were genotyped by capillary electrophoresis. Thirty different alleles with sizes ranging from 197 to 569 bp were determined. The number of alleles ranged from 17 (Itunduma) to 21 (Mbeya), with an average of 19.20 alleles per ecotype. Allelic polymorphism was further evaluated through genotyping by Sanger sequencing. Thirty-three DNA samples with different fragment sizes were re-amplified and their alleles sequenced to depict polymorphism based on a combination of two repeat regions at 12 and 13 bp, respectively, and flanking regions with SNP and indels. The repeat region at 13 bp appeared 1 to 28 times, whereas the region at 12 bp appeared 3 to 19 times in all sequenced fragments. The numbers of indels and SNP determined were 7 and 9, respectively. From capillary electrophoresis, the Chunya and Msimbazi ecotypes exhibited the highest genetic diversity (0.937), whereas the lowest value (0.910) was observed from the Mbarali ecotype, with an average of 0.925. The Namtumbo and Wanging’ombe ecotypes showed high inbreeding coefficients (F
IS
> 0.05), whereas a high excess heterozygote value (F
IS
= –0.098) was observed from the Njombe ecotype. Two percent of the genetic diversity was due to differences among ecotypes, and the rest was due to differences among individuals within the ecotypes. Despite the overall low genetic differentiation, both fragment and sequencing analyses depicted a high allelic and genetic variability across 10 chicken ecotypes. These results therefore, underscore the importance of establishing appropriate conservation and management strategies to capitalize on observed variability and maintain genetic flexibility across diverse production environments.
Integrated landscape management is a process for achieving multiple objectives related to agricultural production, ecosystem conservation, and sustainable natural resource management. These multiple livelihood functions are important features of an agricultural landscape in Mbeya, Tanzania. Due to environmental damage caused by agricultural expansion and charcoal burning, a process called integrated agricultural landscape management (IALM) was implemented to address this problem. This encompassed the identification and involvement of a range of key landscape actors and processes like awareness creation and joint problem analysis, solution framing, learning, planning and implementation of actions, and monitoring and evaluation. A multistakeholder innovation platform was formed for creating a coordination mechanism, common understanding, vision and goals, and networking. Fifty IALM ideas were identified and six selected by the stakeholders. Outcomes of using the IALM process included policy recommendations, joint learning, and innovative actions and were codeveloped, implemented, monitored, and evaluated with the local communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.