We use the results of large-scale simulations of reionization to explore methods for characterizing the topology and sizes of HII regions during reionization. We use four independent methods for characterizing the sizes of ionized regions. Three of them give us a full size distribution: the friends-of-friends (FOF) method, the spherical average method (SPA) and the power spectrum (PS) of the ionized fraction. These latter three methods are complementary: While the FOF method captures the size distribution of the small scale H II regions, which contribute only a small amount to the total ionization fraction, the spherical average method provides a smoothed measure for the average size of the H II regions constituting the main contribution to the ionized fraction, and the power spectrum does the same while retaining more details on the size distribution. Our fourth method for characterizing the sizes of the H II regions is the average size which results if we divide the total volume of the H II regions by their total surface area, (i.e. 3V/A), computed in terms of the ratio of the corresponding Minkowski functionals of the ionized fraction field. To characterize the topology of the ionized regions, we calculate the evolution of the Euler Characteristic. We find that the evolution of the topology during the first half of reionization is consistent with inside-out reionization of a Gaussian density field. We use these techniques to investigate the dependence of size and topology on some basic source properties, such as the halo mass-to-light ratio, susceptibility of haloes to negative feedback from reionization, and the minimum halo mass for sources to form. We find that suppression of ionizing sources within ionized regions slows the growth of H II regions, and also changes their size distribution. Additionally, the topology of simulations including suppression is more complex, as indicated by the evolution of the Euler characteristic of the ionized regions. We find density and ionized fraction to be correlated on large scales, in agreement with the inside-out picture of reionization.
We present a detailed comparison of three different simulations of the epoch of reionization (EoR). The radiative transfer simulation (C 2 -RAY) among them is our benchmark. Radiative transfer codes can produce realistic results, but are computationally expensive. We compare it with two semi-numerical techniques: one using the same halos as C 2 -RAY as its sources (SemNum), and one using a conditional Press-Schechter scheme (CPS+GS). These are vastly more computationally efficient than C 2 -RAY, but use more simplistic physical assumptions. We evaluate these simulations in terms of their ability to reproduce the history and morphology of reionization. We find that both Sem-Num and CPS+GS can produce an ionization history and morphology that is very close to C 2 -RAY, with Sem-Num performing slightly better compared to CPS+GS.We also study different redshift space observables of the 21-cm signal from EoR: the variance, power spectrum and its various angular multipole moments. We find that both seminumerical models perform reasonably well in predicting these observables at length scales relevant for present and future experiments. However, Sem-Num performs slightly better than CPS+GS in producing the reionization history, which is necessary for interpreting the future observations. The CPS+GS scheme, however, has the advantage that it is not restricted by the mass resolution of the dark matter density field.
Abstract. Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of aerosols and tropospheric nitrogen dioxide (NO2) were carried out in Uccle (50.8∘ N, 4.35∘ E), Brussels, during 1 year from March 2018 until March 2019. The instrument was operated in both the UV and visible wavelength ranges in a dual-scan configuration consisting of two sub-modes: (1) an elevation scan in a fixed viewing azimuthal direction (the so-called main azimuthal direction) pointing to the northeast and (2) an azimuthal scan in a fixed low elevation angle (2∘). By applying a vertical profile inversion algorithm in the main azimuthal direction and a parameterization technique in the other azimuthal directions, near-surface NO2 volume mixing ratios (VMRs) and vertical column densities (VCDs) were retrieved in 10 different azimuthal directions. The dual-scan MAX-DOAS dataset allows for partly resolving the horizontal distribution of NO2 around the measurement site and studying its seasonal variations. Furthermore, we show that measuring the tropospheric NO2 VCDs in different azimuthal directions improves the spatial colocation with measurements from the Sentinel-5 Precursor (S5P), leading to a reduction of the spread in validation results. By using NO2 vertical profile information derived from the MAX-DOAS measurements, we also resolve a systematic underestimation in S5P NO2 data due to the use of inadequate a priori NO2 profile shape data in the satellite retrieval.
We present a study of the impact of a bright quasar on the redshifted 21‐cm signal during the epoch of reionization (EoR). Using three different cosmological radiative transfer simulations, we investigate if quasars are capable of substantially changing the size and morphology of the H ii regions they are born in. We choose stellar and quasar luminosities in a way that is favourable to seeing such an effect. We find that even the most luminous of our quasar models is not able to increase the size of its native H ii region substantially beyond those of large H ii regions produced by clustered stellar sources alone. However, the quasar H ii region is found to be more spherical. We next investigate the prospects of detecting such H ii regions in the redshifted 21‐cm data from the Low Frequency Array (LOFAR) by means of a matched filter technique. We find that H ii regions with radii ∼25 comoving Mpc or larger should have a sufficiently high detection probability for 1200 h of integration time. Although the matched filter can in principle distinguish between more and less spherical regions, we find that when including realistic system noise this distinction can no longer be made. The strong foregrounds are found not to pose a problem for the matched filter technique. We also demonstrate that when the quasar position is known, the redshifted 21‐cm data can still be used to set upper limits on the ionizing photon rate of the quasar. If both the quasar position and its luminosity are known, the redshifted 21‐cm data can set new constraints on quasar lifetimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.