SummaryAREA (NIT2) is a general transcription factor involved in derepression of numerous genes responsible for nitrogen utilization in Gibberella fujikuroi and many other fungi. We have previously shown that the deletion of areA-GF resulted in mutants with significantly reduced gibberellin (GA) production. Here we demonstrate that the expression level of six of the seven GA biosynthesis genes is drastically reduced in mutants lacking areA . Furthermore, we show that, despite the fact that GAs are nitrogen-free diterpenoid compounds, which are not obviously involved in nitrogen metabolism, AREA binds directly to the promoters of the six N-regulated genes. The binding of AREA was analysed in more detail using the promoter of one of the GA-biosynthesis genes encoding the ent -kaurene oxidase ( P450-4 ). Deletion/mutation analysis of the P450-4 promoter fused to the Escherichia coli uidA gene, which encodes b b b b -glucuronidase, allowed the in vivo identification of functional GATA motifs. We have also analysed the nmr gene of G . fujikuroi ( nmr-GF ) which has high similarity to the Neurospora crassa nmr-1 and Aspergillus nidulans nmrA genes, both involved in nitrogen metabolite repression. In contrast to our expectation, deletion of nmr-GF did not result in significant derepression of the GA biosynthesis genes in the presence of ammonium, glutamine or glutamate. Overexpression of the nmr-GF gene fused to the strong promoter of the G. fujikuroi glutamine synthetase ( gs ) gene revealed only a very slight repression of the nitrate reductase ( niaD ) gene, resulting in weak resistance to chlorate. Surprisingly, this effect was only observed in the presence of high amounts of glutamate; cultivation on ammonium failed to induce any resistance to chlorate. Despite the limited effect of gene replacement and overexpression of nmr-GF on the nitrogen metabolism of G. fujikuroi itself, the gene fully restored nitrogen metabolite repression in A. nidulans and N. crassa nmr mutants. Therefore, we postulate that, in contrast to A. nidulans and N. crassa , NMR does not function independently as the main modulator of AREA in G. fujikuroi.
Recently, six genes of the gibberellin (GA) biosynthesis gene cluster in Gibberella fujikuroi were cloned and the functions of five of these genes were determined. Here we describe the function of the sixth gene, P450 -3, and the cloning and functional analysis of a seventh gene, orf3, located at the left border of the gene cluster. We have thereby defined the complete GA biosynthesis gene cluster in this fungus. The predicted amino acid sequence of orf3 revealed no close homology to known proteins. High performance liquid chromatography and gas chromatography-mass spectrometry analyses of the culture fluid of knock-out mutants identified GA 1 and GA 4 , rather than GA 3 and GA 7 , as the major C 19 -GA products, suggesting that orf3 encodes the GA 4 1,2-desaturase. This was confirmed by transformation of the SG139 mutant, which lacks the GA biosynthesis gene cluster, with the desaturase gene renamed des. The transformants converted GA 4 to GA 7 , and also metabolized GA 9 (3-deoxyGA 4 ) to GA 120 (1,2-didehydroGA 9 ), but the 2␣-hydroxylated compound GA 40 was the major product in this case. We demonstrate also by gene disruption that P450-3, one of the four cytochrome P450 monooxygenase genes in the GA gene cluster, encodes the 13-hydroxylase, which catalyzes the conversion of GA 7 to GA 3 , in the last step of the pathway. This enzyme also catalyzes the 13-hydroxylation of GA 4 to GA 1 . Disruption of the des gene in an UV-induced P450 -3 mutant produced a double mutant lacking both desaturase and 13-hydroxylase activities that accumulated high amounts of the commercially important GA 4 . The des and P450 -3 genes differ in their regulation by nitrogen metabolite repression. In common with the other five GA biosynthesis genes, expression of the desaturase gene is repressed by high amounts of nitrogen in the culture medium, whereas P450-3 is the only gene in the cluster not repressed by nitrogen.
CPTF1, a transcription factor with significant homology to ATF/CREB bZIP factors, was identified during an expressed sequence tag (EST) analysis of in planta-expressed genes of the phytopathogen Claviceps purpurea. Using a gene-replacement approach, deletion mutants of cptf1 were created. Expression studies in axenic culture showed that the H2O2-inducible gene cpcat1 (encoding a secreted catalase) had a reduced basal expression level and no longer responded to oxidative stress in the delta cptf1 mutant. Biochemical analyses indicated that CPTF1 is a general regulator of catalase activity. Delta cptf1 mutants showed significantly reduced virulence on rye. Electron microscopical in situ localization revealed significant amounts of H2O2 in delta cptf1-infected rye epidermal tissues, indicating that the plant tissue displayed an oxidative burst-like reaction, an event not detected in wild-type infections. These data indicate that CPTF1 is involved not only in oxidative stress response in the fungus but also in modulation of the plant's defense reactions.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.