Engineering quantum states of light represents a crucial task in the vast majority of photonic quantum technology applications. Direct manipulation of the number of photons in the light signal, such as single-photon subtraction and addition, proved to be an efficient strategy for the task. Here we propose an adaptive multi-photon subtraction scheme where a particular subtraction task is conditioned by all previous subtraction events in order to maximize the probability of successful subtraction. We theoretically illustrate this technique on the model example of conversion of Fock states via photon subtraction. We also experimentally demonstrate the core building block of the proposal by implementing a feedforward-assisted conversion of two-photon state to a single-photon state. Our experiment combines two elementary photon subtraction blocks where the splitting ratio of the second subtraction beam splitter is affected by the measurement result from the first subtraction block in real time using an ultra-fast feedforward loop. The reported optimized photon subtraction scheme applies to a broad range of photonic states, including highly nonclassical Fock states and squeezed light, advancing the photonic quantum toolbox.
We report a single-photon Mach-Zehnder interferometer stabilized to a phase precision of 0.05 degrees over 15 hours. To lock the phase, we employ an auxiliary reference light at a different wavelength than the quantum signal. The developed phase locking operates continuously, with negligible crosstalk, and for an arbitrary phase of the quantum signal. Moreover, its performance is independent of intensity fluctuations of the reference. Since the presented method can be used in a vast majority of quantum interferometric networks it can significantly improve phase-sensitive applications in quantum communication and quantum metrology.
Coherent interaction of a quantum system with environment usually induces quantum decoherence. However, remarkably, in certain configurations the coherent system–environment coupling can be simultaneously explored to engineer a specific dark state of the environment that eliminates the decoherence. Here we report on experimental demonstration of such protocol for suppression of quantum decoherence by quantum decoherence itself. The protocol is based on indirect control of the environment via quantum measurements on quantum probes interacting with the environment prior to the system that should be protected. No direct manipulation with the environment is required to suppress the decoherence. In our proof-of-principle experiment, we demonstrate protection of a single qubit coupled to another single qubit. We implement the required quantum circuits with linear optics and single photons, which allows us to maintain very high degree of control and flexibility in the experiment. Our results clearly confirm the decoherence suppression achieved by the protocol and pave the way to its application to other physical platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.