Background: Age-related arterial alterations affecting cells, matrix and biomolecules are the main culprit for initiation and progression of cardiovascular disease. The objective of this study is to gain further insights into the complex mechanism of elastic tissue ageing in human aortic blood vessels. Methods: One hundred and nineteen human aortic tissue samples were collected from adult patients (101 males, 18 females; age 40–86 years) undergoing coronary artery bypass grafting. Overall extracellular matrix architecture was examined by multiphoton laser scanning microscopy and histology. Matrix metalloproteinases 2 and 9, corresponding tissue inhibitors 1 and 2 as well as desmosine were determined. mRNA levels of tropoelastin were assessed by quantitative RT-PCR. Results: Age-related destruction of the vascular elastic laminas as well as a loss of interlamina cross-links were observed by laser scanning microscopy. These results were confirmed by histology indicating increasing interlamina gaps. There were no significant differences in matrix turnover or desmosine content. A steady decrease in tropoelastin mRNA by about 50% per 10 years of age increase was observed. Conclusions: Our findings indicate that ageing is accompanied by a destruction of the elastic vascular structure. However, tropoelastin expression analysis suggests that elastogenesis occurs throughout life with constantly decreasing levels.
The purpose of this study was evaluation of an ice-free cryopreservation method for heart valves in an allogeneic juvenile pulmonary sheep implant model and comparison with traditionally frozen cryopreserved valves. Hearts of 15 crossbred Whiteface sheep were procured in Minnesota. The valves were processed in South Carolina and the pulmonary valves implanted orthotopically in 12 black faced Heidschnucke sheep in Germany. The ice-free cryopreserved valves were cryopreserved in 12.6 mol/l cryoprotectant (4.65, 4.65, and 3.31 mol/l of dimethylsulfoxide, formamide and 1,2-propanediol) and stored at -80°C. Frozen valves were cryopreserved by controlled slow rate freezing in 1.4 mol/l dimethylsulfoxide and stored in vapor-phase nitrogen. Aortic valve tissues were used to evaluate the impact of preservation without implantation. Multiphoton microscopy revealed reduced but not significantly damaged extracellular matrix before implantation in frozen valves compared with ice-free tissues. Viability assessment revealed significantly less metabolic activity in the ice-free valve leaflets and artery samples compared with frozen tissues (P < 0.05). After 3 and 6 months in vivo valve function was determined by two-dimensional echo-Doppler and at 7 months the valves were explanted. Severe valvular stenosis with right heart failure was observed in recipients of frozen valves, the echo data revealed increased velocity and pressure gradients compared to ice-free valve recipients (P = 0.0403, P = 0.0591). Histo-pathology showed significantly thickened leaflets in the frozen valves (P < 0.05) and infiltrating CD3+ T-cells (P < 0.05) compared with ice-free valve leaflets. Multiphoton microscopy at explant revealed reduced inducible autofluorescence and extracellular matrix damage in the frozen explants and well preserved structures in the ice-free explant leaflets. In conclusion, ice-free cryopreservation of heart valve transplants at -80°C avoids ice formation, tissue-glass cracking and preserves extracellular matrix integrity resulting in minimal inflammation and improved hemodynamics in allogeneic juvenile sheep.
In vivo self-endothelialization by endothelial cell adhesion on cardiovascular implants is highly desirable. DNA-oligonucleotides are an intriguing coating material with nonimmunogenic characteristics and the feasibility of easy and rapid chemical fabrication. The objective of this study was the creation of cell adhesive DNA-oligonucleotide coatings on vascular implant surfaces. DNA-oligonucleotides immobilized by adsorption on parylene (poly(monoaminomethyl-para-xylene)) coated polystyrene and ePTFE were resistant to high shear stress (9.5 N/m2) and human blood serum for up to 96 h. Adhesion of murine endothelial progenitor cells, HUVECs and endothelial cells from human adult saphenous veins as well as viability over a period of 14 days of HUVECs on oligonucleotide coated samples under dynamic culture conditions was significantly enhanced (P < 0.05). Oligonucleotide-coated surfaces revealed low thrombogenicity and excellent hemocompatibility after incubation with human blood. These properties suggest the suitability of immobilization of DNA-oligonucleotides for biofunctionalization of blood vessel substitutes for improved in vivo endothelialization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.