The relationships between projected use, self-reported behavior and attitudes to performance-enhancing (PED) and recreational (RD) drugs were investigated among 82 competitive Hungarian athletes, with 14.6% admitting using PED and 31.7% using RD. Both the observed doping estimations (even those made by non-users) and self-admitted use were considerably higher than the average rate of positive doping tests (2% of all tests). The notable overestimation by PED users (34.6% vs 16.9%) was in keeping with the false consensus effect. A prediction model with attitude and projection to the likelihood of PED use suggested at least a 70% chance of self-involvement of athletes, with responses at or above the median scores (Performance Enhancement Attitude Scale ≥ 60 and estimation ≥ 50%) on the two independent measures. Users overestimated the prevalence of doping in their sport (P=0.007) but not RD use, with the converse holding for RD users' views of doping (P=0.029). PED users also showed a significantly more lenient attitude toward doping (P<0.001). This domain-specific characteristic adds new information to the ongoing research effort in understanding drug-doping co-morbidity. The reasons for elevated in-group projection are discussed, along with the potential application of this phenomenon in doping epidemiology studies.
BackgroundSocial science studies of doping practices in sport rely predominantly on self-reports. Studies of psychoactive drug use indicate that self-reporting is characterised by under-reporting. Likewise doping practice is likely to be equally under-reported, if not more so. This calls for more sophisticated methods for such reporting and for independent, objective validation of its results. The aims of this study were: i) to contrast self-reported doping use with objective results from chemical hair analysis and ii) to investigate the influence of the discrepancy on doping attitudes, social projection, descriptive norms and perceived pressure to use doping.Methodology/Principal FindingsA doping attitudes questionnaire was developed and combined with a response latency-based implicit association test and hair sample analysis for key doping substances in 14 athletes selected from a larger sample (N = 82) to form contrast comparison groups. Results indicate that patterns of group differences in social projection, explicit attitude about and perceived pressure to use doping, vary depending on whether the user and non-user groups are defined by self-report or objectively verified through hair analysis. Thus, self-confessed users scored higher on social projection, explicit attitude to doping and perceived pressure. However, when a doping substance was detected in the hair of an athlete who denied doping use, their self-report evidenced extreme social desirability (negative attitude, low projection and low perceived pressure) and contrasted sharply with a more positive estimate of their implicit doping attitude.Conclusions/SignificanceHair analysis for performance enhancing substances has shown considerable potential in validating athletes' doping attitude estimations and admissions of use. Results not only confirm the need for improved self-report methodology for future research in socially-sensitive domains but also indicate where the improvements are likely to come from: as chemical validation remains expensive, a more realistic promise for large scale studies and online data collection efforts is held by measures of implicit social cognition.
BackgroundSocial psychology research on doping and outcome based evaluation of primary anti-doping prevention and intervention programmes have been dominated by self-reports. Having confidence in the validity and reliability of such data is vital.Methodology/Principal FindingsThe sample of 82 athletes from 30 sports (52.4% female, mean age: 21.48±2.86 years) was split into quasi-experimental groups based on i) self-admitted previous experience with prohibited performance enhancing drugs (PED) and ii) the presence of at least one prohibited PED in hair covering up to 6 months prior to data collection. Participants responded to questionnaires assessing a range of social cognitive determinants of doping via self-reports; and completed a modified version of the Brief Implicit Association Test (BIAT) assessing implicit attitudes to doping relative to the acceptable nutritional supplements (NS). Social projection regarding NS was used as control.PEDs were detected in hair samples from 10 athletes (12% prevalence), none of whom admitted doping use. This group of ‘deniers’ was characterised by a dissociation between explicit (verbal declarations) and implicit (BIAT) responding, while convergence was observed in the ‘clean’ athlete group. This dissociation, if replicated, may act as a cognitive marker of the denier group, with promising applications of the combined explicit-implicit cognitive protocol as a proxy in lieu of biochemical detection methods in social science research. Overall, discrepancies in the relationship between declared doping-related opinion and implicit doping attitudes were observed between the groups, with control measures remaining unaffected. Questionnaire responses showed a pattern consistent with self-reported doping use.Conclusions/SignificanceFollowing our preliminary work, this study provides further evidence that both self-reports on behaviour and social cognitive measures could be affected by some form of response bias. This can question the validity of self-reports, with reliability remaining unaffected. Triangulation of various assessment methods is recommended.
BackgroundConsiderable efforts are being extended to develop more effective methods to detect drugs in forensic science for applications such as preventing doping in sport. The aim of this study was to develop a sensitive and accurate method for analytes of forensic and toxicological nature in human hair at sub-pg levels.ResultsThe hair test covers a range of different classes of drugs and metabolites of forensic and toxicological nature including selected anabolic steroids, cocaine, amphetamines, cannabinoids, opiates, bronchodilators, phencyclidine and ketamine. For extraction purposes, the hair samples were decontaminated using dichloromethane, ground and treated with 1 M sodium hydroxide and neutralised with hydrochloric acid and phosphate buffer and the homogenate was later extracted with hexane using liquid-liquid extraction (LLE). Following extraction from hair samples, drug-screening employed liquid chromatography coupled to tandem mass spectrometric (LC-MS/MS) analysis using dynamic multiple reaction monitoring (DYN-MRM) method using proprietary software. The screening method (for > 200 drugs/metabolites) was calibrated with a tailored drug mixture and was validated for 20 selected drugs for this study. Using standard additions to hair sample extracts, validation was in line with FDA guidance. A Zorbax Eclipse plus C18 (2.1 mm internal diameter × 100 mm length × 1.8 μm particle size) column was used for analysis. Total instrument run time was 8 minutes with no noted matrix interferences. The LOD of compounds ranged between 0.05-0.5 pg/mg of hair. 233 human hair samples were screened using this new method and samples were confirmed positive for 20 different drugs, mainly steroids and drugs of abuse.ConclusionsThis is the first report of the application of this proprietary system to investigate the presence of drugs in human hair samples. The method is selective, sensitive and robust for the screening and confirmation of multiple drugs in a single analysis and has potential as a very useful tool for the analysis of large array of controlled substances and drugs of abuse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.