Obesity is associated with risk factors for cardiovascular disease, including insulin resistance, and can lead to cardiac hypertrophy and congestive heart failure. Here, we used the insulin-sensitizing agent rosiglitazone to investigate the cellular mechanisms linking insulin resistance in the obese Zucker rat heart with increased susceptibility to ischemic injury. Rats were treated for 7 or 14 days with 3 mg/kg per os rosiglitazone. Hearts were isolated and perfused before and during insulin stimulation or during 32 min low-flow ischemia at 0.3 ml ⅐ min ؊1 ⅐ grams wet wt ؊1 and reperfusion. D[2-3 H]glucose was used as a tracer of glucose uptake, and phosphorus-31 nuclear magnetic resonance spectroscopy was used to follow energetics during ischemia. At 12 months of age, obese rat hearts were insulin resistant with decreased GLUT4 protein expression. During ischemia, glucose uptake was lower and depletion of ATP was greater in obese rat hearts, thereby significantly impairing recovery of contractile function during reperfusion. Rosiglitazone treatment normalized the insulin resistance and restored GLUT4 protein levels in obese rat hearts. Glucose uptake during ischemia was also normalized by rosiglitazone treatment, thereby preventing the greater loss of ATP and restoring recovery of contractile function to that of lean rat hearts. We conclude that rosiglitazone treatment, by normalizing glucose uptake, protected obese rat hearts from ischemic injury.
An ECG and respiration-gated spin-labeling gradient-echo imaging technique is proposed for the quantitative and completely noninvasive measurement and mapping of myocardial perfusion in small animals in vivo. In contrast to snapshot FLASH imaging, the spatial resolution of the perfusion maps is not limited by the heart rate. A significant improvement in image quality is achieved by synchronizing the inversion pulse to the respiration movements of the animals, thereby allowing for spontaneous respiration. High-resolution myocardial perfusion maps (in-plane resolution ؍ 234 ؋ 468 m 2 ) demonstrating the quality of the perfusion measurement were obtained at 4.7 T in a group of seven freely breathing Wistar-Kyoto rats under isoflurane anesthesia. The mean perfusion value (group average ؎ SD) was 5.5 ؎ 0.7 ml g -1 min -1 . In four animals, myocardial perfusion was mapped and measured under cardiac dobutamine stress. Perfusion increased to 11.1 ؎ 1.9 ml g -1 min -1 . The proposed method is particularly useful for the study of small rodents at high fields.Magn Reson Med 51:62-67, 2004.
We investigated the tolerance of the insulin-resistant diabetic heart to ischemic injury in the male Goto-Kakizaki (GK) rat, a model of type 2 diabetes. Changes in energy metabolism, nitric oxide (NO) pathway, and cardiac function were assessed in the presence of physiological substrates. Age-matched control Wistar (n = 19) and GK (n = 18) isolated rat hearts were perfused with 0.4 mM palmitate, 3% albumin, 11 mM glucose, 3 U/l insulin, 0.2 mM pyruvate, and 0.8 mM lactate for 24 min before switching to 1.2 mM palmitate (11 rats/group) during 32 min low-flow (0.5 ml·min(-1)·g wet wt(-1)) ischemia. Next, flow was restored with 0.4 mM palmitate buffer for 32 min. A subset of hearts from each group (n = 8 for control and n = 7 for GK groups) were freeze-clamped for determining baseline values after the initial perfusion of 24 min. ATP, phosphocreatine (PCr), and intracellular pH (pH(i)) were followed using (31)P magnetic resonance spectroscopy with simultaneous measurement of contractile function. The NO pathway was determined by nitric oxide synthase (NOS) isoform expression and total nitrate concentration (NOx) in hearts. We found that coronary flow was 26% lower (P < 0.05) during baseline conditions and 61% lower (P < 0.05) during reperfusion in GK vs. control rat hearts. Rate pressure product was lower during reperfusion in GK vs. control rat hearts (P < 0.05). ATP, PCr, and pH(i) during ischemia-reperfusion were similar in both groups. Endothelial NOS expression was increased in GK rat hearts during baseline conditions (P < 0.05). NOx was increased during baseline conditions (P < 0.05) and after reperfusion (P < 0.05) in GK rat hearts. We report increased susceptibility of type 2 diabetic GK rat heart to ischemic injury that is not associated with impaired energy metabolism. Reduced coronary flow, upregulation of eNOS expression, and increased total NOx levels confirm NO pathway modifications in this model, presumably related to increased oxidative stress. Modifications in the NO pathway may play a major role in ischemia-reperfusion injury of the type 2 diabetic GK rat heart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.