International audienceBACKGROUND: Numerous studies have demonstrated that in vitro controlled enzymatic hydrolysis of fish and shellfish proteins leads to bioactive peptides. Ultrafiltration (UF) and/or nanofiltration (NF) can be used to refine hydrolysates and also to fractionate them in order to obtain a peptide population enriched in selected sizes. This study was designed to highlight the impact of controlled UF and NF on the stability of biological activities of an industrial fish protein hydrolysate (FPH) and to understand whether fractionation could improve its content in bioactive peptides. RESULTS: The starting fish protein hydrolysate exhibited a balanced amino acid composition, a reproducible molecular weight (MW) profile, and a low sodium chloride content, allowing the study of its biological activity. Successive fractionation on UF and NF membranes allowed concentration of peptides of selected sizes, without, however, carrying out sharp separations, some MW classes being found in several fractions. Peptides containing Pro, Hyp, Asp and Glu were concentrated in the UF and NF retentates compared to the unfractionated hydrolysate and UF permeate, respectively. Gastrin/cholecystokinin-like peptides were present in the starting FPH, UF and NF fractions, but fractionation did not increase their concentration. In contrast, quantification of calcitonin gene-related peptide (CGRP)-like peptides demonstrated an increase in CGRP-like activities in the UF permeate, relative to the starting FPH. The starting hydrolysate also showed a potent antioxidant and radical scavenging activity, and a moderate angiotensin-converting enzyme (ACE)-1 inhibitory activity, which were not increased by UF and NF fractionation. CONCLUSION: Fractionation of an FPH using membrane separation, with a molecular weight cut-off adapted to the peptide composition, may provide an effective means to concentrate CGRP-like peptides and peptides enriched in selected amino acids. The peptide size distribution observed after UF and NF fractionation demonstrates that it is misleading to characterize the fractions obtained by membrane filtration according to the MW cut-off of the membrane only, as is currently done in the literature. Copyright © 2010 Society of Chemical Industr
The production by enzymatic treatment of fish protein hydrolysates (FPH) is a promising route to add value to fisheries proteinic co-products (fish frames, heads etc.). Indeed, FPH possess good nutritional properties and biological activities for food and feed uses. Pressure-driven membrane separations such as ultrafiltration (UF) and nanofiltration (NF) can be used after the hydrolysis to increase the specific activities of the FPH. This paper discusses the impact of a two-step UF/NF process producing four different fractions on two industrial FPH with different hydrolysis degrees. Fractionation is carried out in "realistic" conditions for an industrial process, on highly concentrated FPH solutions (about 100 g of dry matter/L) at a high volume reduction factor. For each step, UF or NF, the variation of the permeation flux in the course of the fractionation is discussed according to the FPH hydrolysis degree and the membranes cutoffs. The values of performance indicators defined in terms of nitrogen content are also examined, including the concentration factor (CF), the relative recovery in the retentate (η R) and the mean and final retention factors (RF m and RF f). Computed values of these indicators are validated through the setting of volume and mass balances around each step. The impact of fractionation on the FPH peptidic population is shown. Peptidic populations are described in terms of chromatographic profiles (SEC-FPLC). The UF fractionation produces a permeate enriched with respect to the FPH smaller than a molecular weight of about 600-750 Dalton, and a retentate enriched in large peptides (above the same MW). A similar behaviour is found for the NF fractionation. Comparing the impact of the UF fractionation on the two hydrolysates allows to conclude that the membrane cutoff is well-suited when comprised between the MWs of the biggest and the most abundant peptides in the FPH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.