The flexibility of geostatistical inversions in geophysics is limited by the use of stationary covariances, which, implicitly and mostly for mathematical convenience, assumes statistical homogeneity of the studied field. For fields showing sharp contrasts due, for example, to faults or folds, an approach based on the use of nonstationary covariances for cokriging inversion was developed. The approach was tested on two synthetic cases and one real data set. Inversion results based on the nonstationary covariance were compared to the results from the stationary covariance for two synthetic models. The nonstationary covariance better recovered the known synthetic models. With the real data set, the nonstationary assumption resulted in a better match with the known surface geology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.