The overall incidence of interaction by a magnetic field was low in patients tested with a wide variety of conventionally programmed pacemaker models. A magnetic field pulsed at power frequency can cause a mode switch and pacing inhibition in patients with devices programmed in the unipolar sensing configuration. The risk of interference appears negligible in patients with bipolar sensing programming.
The assessment of magnetic field exposure in children is an important point in the context of epidemiological issues. EXPERS is the first study ever carried out measuring personal exposure to extremely low frequency magnetic fields at a national scale, involving 977 French children with 24 h personal measurements. Descriptive statistical analyses were performed for all the children, and only for children where no alarm clock was identified, as in some cases this requirement of the measurement protocol was not respected. The proportion of children with a 24 h arithmetic mean of ≥0.4 μT was 3.1% when considering all children and 0.8% when excluding alarm clocks. The alarm clocks were the main variable linked to the child exposure measurements. Magnetic field exposure increased when the home was located close to a high voltage power line. However, none of the 0.8% of children living at <125 m to a 225 kV line or <200 m to a 400 kV overhead line had a personal exposure of >0.4 μT. A multiple correspondence analysis showed the difficulty to build a statistical model predicting child exposure. The distribution of child personal exposure was significantly different from the distribution of exposure during sleep, questioning the exposure assessment in some epidemiological studies.
Thisstudy aims to compute 50 Hz electric field interferences on pacemakers for diverse lead configurations and implantation positions. Induced phenomena in a surface-based virtual human model (standing male grounded with arms closed, 2 mm resolution) are computed for vertical exposure using CST EM® 3D software, with and without an implanted pacemaker. Induced interference voltages occurring on the pacemaker during exposure are computed and the results are discussed. The bipolar mode covers 99% of the implanted pacing leads in the USA and Europe, according to statistics. The tip-to-ring distance of a lead may influence up to 46% of the induced voltage. In bipolar sensing mode, right ventricle implantation has a 41% higher induced voltage than right atrium implantation. The induced voltage is in average 10 times greater in unipolar mode than in bipolar mode, when implanted in the right atrium or right ventricle. The electric field threshold of interference for a bipolar sensing mode in the worst case setting is 7.24 kV·m−1, and 10 times higher for nominal settings. These calculations will be completed by an in vitro study.
Characterization of children exposure to extremely low frequency (ELF) magnetic fields is an important issue because of the possible correlation of leukemia onset with ELF exposure. Cluster analysis—a Machine Learning approach—was applied on personal exposure measurements from 977 children in France to characterize real-life ELF exposure scenarios. Electric networks near the child’s home or school were considered as environmental factors characterizing the exposure scenarios. The following clusters were identified: children with the highest exposure living 120–200 m from 225 kV/400 kV overhead lines; children with mid-to-high exposure living 70–100 m from 63 kV/150 kV overhead lines; children with mid-to-low exposure living 40 m from 400 V/20 kV substations and underground networks; children with the lowest exposure and the lowest number of electric networks in the vicinity. 63–225 kV underground networks within 20 m and 400 V/20 kV overhead lines within 40 m played a marginal role in differentiating exposure clusters. Cluster analysis is a viable approach to discovering variables best characterizing the exposure scenarios and thus it might be potentially useful to better tailor epidemiological studies. The present study did not assess the impact of indoor sources of exposure, which should be addressed in a further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.